Application of the K-Means Algorithm for Clustering Plantation Crop Production in Indonesia

##plugins.themes.bootstrap3.article.main##

Reda Maulidina Suastika Yulia Riska

Abstract

Plantation crop production is one of the main sectors in increasing people's income. Data on plantation products held by the Central Statistics Agency (BPS) is in the form of raw data, namely the production results of each province each year. This makes it quite difficult for the government to identify provinces that have the potential to produce crops. By clustering plantation crop production results, it will be easier for the government to identify provinces that have the potential to produce plantation crops. In this research there were 3 plantation crop production, namely coconut, coffee and cocoa. The data used is data for 2017 – 2021 which consists of 29 provinces. From the 3 plantation crop production, the data was collected using the K-Means Algorithm Data Mining technique. The results of this research are groupings which are divided into 2 clusters obtained from the Sum of Squared Error (SSE) calculation with a minimum value of 279261.63, namely low production and large production. Based on the results of the K-Means Algorithm calculations, it was found that coconut production had a small production cluster of 24 provinces, a large cluster of 5 provinces, for coffee a small production cluster of 23 provinces was obtained, a large production cluster was 6 provinces, and for cocoa a small production cluster was obtained of 23 provinces. , a cluster of 6 provinces.

##plugins.themes.bootstrap3.article.details##

Section
Articles
References
[1] J. I. Ekonomi, “Analisis ekspor kakao indonesia di pasar internasional,” vol. 1, no. Machfudz 2007, pp. 453–472, 2017.
[2] J. Ilmiah and W. Pendidikan, “Pengaruh Ekspor Dan Impor Terhadap Cadangan Devisa Tahun 2018-2022,” vol. 9, no. 12, pp. 571–579, 2023.
[3] E. Y. Rahmawati, B. Ismanto, D. S. Sitorus, and I. Artikel, “Analisis Pengaruh Ekspor Dan Kurs Terhadap Cadangan Devisa Indonesia Tahun 1990-2019,” no. 2016, 2019.
[4] A. BASTIAN, “Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka),” J. Sist. Inf., vol. 14, no. 1, pp. 28–34, 2018, doi: 10.21609/jsi.v14i1.566.
[5] A. K. Wardhani, “K-Means Algorithm Implementation for Clustering of Patients Disease in Kajen Clinic of Pekalongan,” J. Transform., vol. 14, no. 1, p. 30, 2016, doi: 10.26623/transformatika.v14i1.387.
[6] E. Muningsih and S. Kiswati, “Sistem Aplikasi Berbasis Optimasi Metode Elbow Untuk Penentuan Clustering Pelanggan,” Joutica, vol. 3, no. 1, p. 117, 2018, doi: 10.30736/jti.v3i1.196.
[7] P. Meilina, “Penerapan Data Mining dengan Metode Klasifikasi Menggunakan Decision Tree dan Regresi,” J. Teknol. Univ. Muhammadiyah Jakarta, vol. 7, no. 1, pp. 11–20, 2015, [Online]. Available: jurnal.ftumj.ac.id/index.php/jurtek.
[8] L. Maulida, “Penerapan Datamining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. Dki Jakarta Dengan K-Means,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 2, no. 3, p. 167, 2018, doi: 10.14421/jiska.2018.23-06.
[9] D. A. Alodia, A. P. Fialine, D. Endriani, and E. Widodo, “Implementasi Metode K-Medoids Clustering untuk Pengelompokan Provinsi di Indonesia Berdasarkan Indikator Pendidikan,” Sepren, vol. 2, no. 2, pp. 1–13, 2021, doi: 10.36655/sepren.v2i2.606.
[10] Z. Mustofa and Iman Saufik Suasana, “Algoritma Clustering K-Medoids Pada E-Government Bidang Information and Communication Technology Dalam Penentuan Status Edgi,” J. Teknol. Inf. Dan Komun., vol. 9, no. 1, pp. 1–10, 2020, doi: 10.51903/jtikp.v9i1.162.
[11] D. Alfatah, “Application of the K-Means Clustering Algorithm in Mapping the Regional Voter Strategy for the Legislative Candidates for the DPR RI Penerapan Algoritma K-Means Clustering dalam Memetakan Strategi Daerah Pemilih pada Calon Legislatif DPR RI,” J. Kom., vol. 1, no. 2, pp. 435–443, 2021.
[12] E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” J. Sains dan Manaj., vol. 9, no. 1, pp. 95–100, 2021, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/10428/4839.
[13] S. Y. Riska and L. Farokhah, “Perbandingan Hasil Evaluasi Algoritma K-Means dan K-Medoid Berdasarkan Kunjungan Wisatawan Mancanegara ke Indonesia,” J. Inf. Technol., vol. 8, no. 1, p. hal. 1-8, 2023.
[14] N. T. Hartanti, “Metode Elbow dan K-Means Guna Mengukur Kesiapan Siswa SMK Dalam Ujian Nasional,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 82–89, 2020, doi: 10.25077/teknosi.v6i2.2020.82-89.
[15] A. Winarta and W. J. Kurniawan, “Optimasi Cluster K-means Menggunakan Metode Elbow pada Data Pengguna Narkoba dengan Pemrograman Python,” J. Tek. Inform. Kaputama, vol. 5, no. 1, pp. 113–119, 2021.
[16] A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 51, 2020, doi: 10.30865/mib.v4i1.1784.