Smart System Model for Market Matching Recommendations for Export Destination Countries for MSMEs

##plugins.themes.bootstrap3.article.main##

Eka Yuniar Weda Adistianaya Dewa Fakhruddin Arozi Ahmad Mihdan Advani

Abstract

Export is one way to improve the performance and growth of the MSME business. However, entering the export market is not as easy as one might think. MSMEs have to consider many factors such as regulatory requirements of the destination country, consumer preferences, and competition with local producers in the destination country. In addition, some of the obstacles to the export of MSME products are slow product turnover in importing countries because product stocks do not sell out immediately in these countries and sometimes reach the expiration date. The number of Indonesian MSMEs has reached 65.5 million, which is the largest in ASEAN countries. In addition, the contribution of MSMEs is recorded at around 61% of the national PDP and absorbs 97% of the total workforce in 2021. To assist MSMEs in choosing export destination countries, an intelligent system is needed that can recommend the right destination countries based on the characteristics of MSME products. As for how to determine the Export Destination country by using one of them based on the Trademap site. The urgency of this research aims to build an intelligent system model based on machine learning using the KNN method to recommend the right export destination countries for MSMEs. This machine learning-based intelligent system model is expected to be one of the solutions for MSMEs to effectively expand their markets abroad. This research is also expected to contribute to the development of an intelligent system that can assist MSMEs in choosing the right export destination countries and increasing export effectiveness. The results showed an accuracy rate of 99%, with a precision level of 100%, 100% recall, 100% f1-score.

##plugins.themes.bootstrap3.article.details##

Section
Articles
References
[1] Bambang Nurdewanto, E. S. F. A. S. R., 2017. Aplikasi Market Matching Berbasis Fuzzy sebagai Penunjang Keputusan Ekspor Produk UMKM. Jurnal Ilmu Komputer dan Teknologi Informasi , 9(No. 2 (2017)), pp. 58-61
[2] Databooks.katadata.co.id, 2022. Indonesia Punya UMKM Terbanyak di ASEAN. 2021, 10 (Dikutippada 12 April 2023 pukul 12.05 WIB). https://databoks.katadata.co.id/datapublish/2022/10/11/indonesia-punya-umkm-terbanyak-di-asean-bagaimana-daya-saingnya
[3] Perekonomian, K. K. B., 2022. Pengembangan UMKM Menjadi Necessary Condition untuk Mendorong Pertumbuhan Ekonomi, Jakarta: Kementerian Koordinator Bidang Perekonomian. (Dikutippada 12 April 2023 pukul 12.10 WIB) https://www.ekon.go.id/publikasi/detail/3301/nilai-ekspor-indonesia-catat-rekor-tertinggi-sepanjang-sejarah
[4] Primadewi, M. I. A. A., 2020. Analisa dan Permodelan Proses Bisnis Menggunakan Business Process Model and Notation (BPMN) StudiKasus : LAZ DKD. Proceeding of The 11th University Research Colloquium 2020: Bidang Sosial Humaniora dan Ekonomi, Volume 1, pp. 401-409.
[5] Bedy Purnama, S. M., 2019. Pengantar Machine Learning. Oktober 2019 ed. Bandung: Informatika Bandung.
[6] Asih, H., 2023. Cara Menentukan Negara Tujuan Ekspor dengan Menggunakan Trade Map, Jakarta. (Dikutip pada Dikutip pada 12 April 2023 pukul 12.20 WIB ): https://ukmindonesia.id/.
[7] Djufri, M., 2020. PenerapanTeknik Web Scraping Untuk Penggalian Potensi Pajak (Studi Kasus pada Online Market Place Tokopedia, Shopee dan Bukalapak). Jurnal BPPK, 13(2), pp. 65-75.
[8] Dedy Hariyadi, F., 2019. Membangun Telegrambot Untuk Crawling Malware Osint Menggunakan Raspberry PI. Indonesian Journal of Business Intelligence , 2(1), pp. 18-24.
[9] Bonifasius Yoga AdiPratama, H. A. Y., 2021. Perancangan Proses Implementasi Machine Learning dalam Maintenance Management Untuk Mencegah Derating. JatiUndip :Jurnal Teknik Industri, 16(2), pp. 134-142.
[10] Ilsa Palingga Ninditama, I. P. N. W. C. M. A. D. A., 2021. Klasifikasi Keluarga Sejahtera Study Kasus :Kecamatan Kota Palembang. Jurnal Tekno Kompak, 15(2), pp. 37-49.
[11] Ari Peryanto, A. Y. R. U., 2019. Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network. Jurnal Format, 8(2), pp. 138-147.
[12] Mutiara Ayu Banjarsari, H. I. B. A. F., 2015. Penerapan K-Optimal Pada Algoritma Knn untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan IP Sampai Dengan Semester 4. Kumpulan jurnaLIlmuKomputer (KLIK), 2(2), pp. 50-64.
[13] Elkin Rilvani, dkk.2019. Penentuan Kelulusan Siswa Yayasan Cerdas Bakti Pertiwi Dengan Menggunakan Alghoritma Naïve Bayes Dan Cross Validation. Pelita Teknologi: Jurnal Ilmiah Informatika, Arsitektur dan Lingkungan , 14(2), pp. 145-153.
[14] Asep Muhidin, A. B., 2016. Klasifikasi Tingkat Produktivitas Tanaman Padi Di Kabupaten Karawang Menggunakan Metode Naive Bayes Dan K-Fold Cross Validation. Jurnal TeknologiPelitaBangsa, 7(2), pp. 135-140.
[15] Jogiyanto, 2005. Analisis dan Desain. Yogyakarta: Andi Offset.
[16] M. Agus Muhyidin, dkk, 2020. Perancangan UI/UX Aplikasi MY CIC Layanan Informasi Akademik Mahasiswa Menggunakan Aplikasi Figma. Jurnal Digit :Universitas Catur Insan Cendekia Cirebon, 10(2), pp. 208-219.
[17] Ahmad Fathan Hidayatullah, S. M., 2021. Membuat Aplikasi Web Sains Data Dengan Mudah Menggunakan Streamlit. 2021/03/15, 15 03, p. 1
[18] Astuti, P., 2018. Penggunaan Metode Black Box Testing (Boundary Value Analysis). Factor Exacta, 11(2), pp. 186-195.
[19] Anak Agung Aryasatya Daniswara, I. K. (2023). Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru. JINACS: Journal of Informatics and Computer Science, 97-100.
[20] Dwi Normawati, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI) , 697-711.
[21] Vincentius Riandaru Prasetyo, M. M. (2022). Prediksi Rating Film Pada Website Imdb Menggunakan Metode Neural Network Film Rating Prediction On Imdb Website Using Neural Network. Jurnal Ilmiah NERO, 1-8.