Classification Information System of Students Interests in Extracurriculars for Contest Development with the K-Means Clustering Method

##plugins.themes.bootstrap3.article.main##

Ahmad Fanani Siti Aminah Febry Eka Purwiantono

Abstract

Extracurricular activities at MI (Madrasah Ibtidaiyah) As – Shodiq are only used for activities outside normal school hours to fill out report cards, but problems arise. in the competition is not optimal. With the existing problems, it is expected that the information system built using the website combined with the k-means clustering method can solve the existing problems. By referring to the values ​​in the report cards and daily values, they become parameters for the k-means clustering method. In this study using the waterfall methodology, in the waterfall methodology there are various stages, such as requirements analysis, design, development and testing. This research aims to classify students in extracurricular classes which will then be fostered to maximize extracurricular activities. So, based on the results of research conducted in the development of an information system in the form of a website combined with the k-means clustering method, it has been able to classify students into classes of subjects in extracurricular, so that teachers can foster students in each class long ago. to prepare for the competition. However, in the information system there are still some obstacles such as the time of calculating k-means and features that can be added for further research.

##plugins.themes.bootstrap3.article.details##

Section
Articles
References
[1] P. S. Hasugian and J. Raphita Sagala, “KLIK: Kajian Ilmiah Informatika dan Komputer Penerapan Data Mining Untuk Pengelompokan Siswa Berdasarkan Nilai Akademik dengan Algoritma K-Means,” Media Online, vol. 3, no. 3, pp. 262–268, 2022, [Online]. Available: https://djournals.com/klik.
[2] . Novi and A. Mubarok, “Penerapan Algoritma K-Means untuk Menentukan Kelas Unggulan di SMP Pelita Bandung,” Infomatek, vol. 32, no. 2, pp. 97–106, 2021, doi: 10.23969/infomatek.v23i2.4351.
[3] C. Purnamaningsih, R. Saptono, and A. Aziz, “Pemanfaatan Metode K-Means Clustering dalam Penentuan Penjurusan Siswa SMA,” J. Teknol. Inf. ITSmart, vol. 3, no. 1, p. 27, 2016, doi: 10.20961/its.v3i1.644.
[4] I. M. A. W. Putra, G. Indrawan, and K. Y. E. Aryanto, “Sistem Rekomendasi Berdasarkan Data Transaksi Perpustakaan Daerah Tabanan dengan menggunakan K-Means Clustering,” J. Ilmu Komput. Indones., vol. 3, no. 1, pp. 18–22, 2018, [Online]. Available: http://119.252.161.254/e-journal/index.php/jik/article/view/2749/1314.
[5] A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021, doi: 10.33365/jtk.v15i2.1162.
[6] R. P. Primanda, A. Alwi, and D. Mustikasari, “Data Mining Seleksi Siswa Berprestasi Untuk Menentukan Kelas Unggulan Menggunakan Metode k-Means Clustering (Studi Kasus di MTS Darul Fikri ),” Komputek, vol. 5, no. 1, p. 88, 2021, doi: 10.24269/jkt.v5i1.686.
[7] J. Hutagalung, “Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 606–620, 2022, doi: 10.35957/jatisi.v9i1.1516.
[8] P. K.Srimani and A. S. Kamath, “Data Mining Techniques for the performance Analysis of a Learning Model A Case Study,” Int. J. Comput. Appl., vol. 53, no. 5, pp. 36–42, 2012, doi: 10.5120/8421-1896.
[9] Disnakertrans, “Kelebihan Dan Kekurangan Metode Waterfall, Begini Cara Kerjanya,” 14 April, 2021. https://www.jabarjawara.id/article/detail/kelebihan-dan-kekurangan-metode-waterfall-begini-cara-kerjanya.
[10] T. Tjahjanto, A. Arista, and E. Ermatita, “Information System for State-owned inventories Management at the Faculty of Computer Science,” Sinkron, vol. 7, no. 4, pp. 2182–2192, 2022, doi: 10.33395/sinkron.v7i4.11678.