Indoor Human Presence Detection System Using Histogram of Oriented Gradients Algorithm
##plugins.themes.bootstrap3.article.main##
Abstract
This study aims to develop a web-based monitoring system utilizing computer vision and the Histogram of Oriented Gradients (HOG) algorithm to detect and count the number of people in a room. The research was motivated by the need for automated systems to replace manual methods, particularly during the COVID-19 pandemic, where contactless attendance tracking is critical. The HOG algorithm extracts visual features as image gradients representing human shapes, which are then classified using a machine learning model. The research methodology involved testing various camera configurations and angles, such as above door placement and room corners, with 80 and 60-degree camera angles. The system was built using Python, OpenCV for image processing, and Flask for web interface development. Data was collected through 200 trials, capturing live images with a camera. The results showed that the camera positioned above the door at an 80-degree angle achieved the highest detection accuracy at 66%, while other configurations showed reduced accuracy, averaging around 52%. The system also logs data, including time, detected human count, and captured images for further analysis. The findings highlight the importance of camera placement and angle in ensuring effective human detection. These results support the development of computer vision-based systems for practical applications such as crowd management, attendance counting, and public space monitoring. Future research is proposed to improve detection accuracy by integrating facial recognition technology and developing a more intuitive user interface. This study contributes substantially to improving the efficiency of automated systems for counting individuals in enclosed spaces, addressing various industrial and social needs.
##plugins.themes.bootstrap3.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The writer agreed that the article copyright by Smatika journal and the writer has the right to disseminate the paper published without permission in advance.
[2] I. Ruswita and D. Syamsuar, “Analisis Kematangan Layanan Teknologi Informasi Hotel Menggunakan ITIL V.3 Framework,” SMATIKA : STIKI Informatika Jurnal, vol. 13, no. 01, pp. 1–8, 2023, doi: 10.32664/smatika.v13i01.680.
[3] J. F. Palandi and Z. E. Pudyastuti, “A Systematic Literature Review on the Methods of Interactive English Language Teaching using Diverse Online Platforms,” SJLE, vol. 2, no. 2, pp. 104–116, 2023.
[4] B. B. M. Wantania, S. R. U. A. Sompie, and F. D. Kambey, “Penerapan Pendeteksian Manusia dan Objek dalam Keranjang Belanja pada Antrian di Kasir,” Jurnal Teknik Informatika, vol. 15, no. 2, pp. 101–108, 2020.
[5] W. Prastiwinarti, M. K. Delimayanti, Y. P. Pratama, E. D. Rakhmawati, H. Wendho, and R. Adi, “Perancangan Pemanfaatan Machine Learning untuk Deteksi Cacat Kemasan Produk,” in SNIV: Seminar Nasional Inovasi Vokasi, 2023, pp. 97–102.
[6] O. Akbar, E. Utami, and D. Ariatmanto, “Deteksi Tumor Otak Melalui Gambar MRI Berdasarkan Vision Transformers dengan Tensorflow dan Keras,” Jurnal Informatika Universitas Pamulang, vol. 8, no. 3, pp. 385–392, 2023, doi: 10.32493/informatika.v8i3.32707.
[7] A. Helnawan, M. Attamimi, and A. N. Irfansyah, “Sistem Segmentasi Jalan dan Objek untuk Kendaraan Otonom Menggunakan Kamera RGB-D,” Jurnal Teknik ITS, vol. 12, no. 1, pp. A55–A62, 2023, doi: 10.12962/j23373539.v12i1.110848.
[8] D. T. Laksono, I. N. Husna, M. Ulum, A. K. Saputro, M. F. Fahmi, and D. N. Purnamasari, “Sistem Deteksi dan Perhitungan Jumlah Manusia dalam Ruangan menggunakan Metode Convolutional Neural Network,” Jurnal Simantec, vol. 11, no. 1, pp. 131–138, 2022, doi: 10.21107/simantec.v11i1.19745.
[9] C. I. Patel, D. Labana, S. Pandya, K. Modi, H. Ghayvat, and M. Awais, “Histogram of Oriented Gradient-Based Fusion of Features for Human Action Recognition in Action Video Sequences,” Sensors (Switzerland), vol. 20, no. 24, pp. 1–33, 2020, doi: 10.3390/s20247299.
[10] V. Kong, S. Soeng, M. Thon, W. S. Cho, A. Nayyar, and T. K. Kim, “PIFR: A novel approach for analyzing pose angle-based human activity to automate fall detection in videos,” Plos One, vol. 20, no. 6 June, pp. 1–23, 2025, doi: 10.1371/journal.pone.0325253.
[11] T. A. Dompeipen, S. R. U. A. Sompie, and M. E. I. Najoan, “Computer Vision Implementation for Detection and Counting the Number of Humans,” Jurnal Teknik Informatika, vol. 16, no. 1, pp. 65–76, 2021.
[12] R. Suhirja and J. Jemakmun, “Sistem Deteksi Masker Menggunakan Algoritma Haar Cascade dalam Menghadapi Era New Normal,” Smatika Jurnal, vol. 12, no. 02, pp. 222–232, 2022, doi: 10.32664/smatika.v12i02.702.
[13] A. Riansyah and A. H. Mirza, “Pendeteksi Mobil Berdasarkan Merek dan Tipe Menggunakan Algoritma YOLO,” SMATIKA : STIKI Informatika Jurnal, vol. 13, no. 01, pp. 43–52, 2023, doi: 10.32664/smatika.v13i01.719.
[14] C. Rahmad, R. A. Asmara, D. R. H. Putra, I. Dharma, H. Darmono, and I. Muhiqqin, “Comparison of Viola-Jones Haar Cascade Classifier and Histogram of Oriented Gradients (HOG) for Face Detection,” in IOP Conference Series: Materials Science and Engineering, 2020, pp. 1–8. doi: 10.1088/1757-899X/732/1/012038.
[15] J. F. Palandi, Z. E. Pudyastuti, and K. Molewe, “Enhancing English Vocabulary through Game-Based Learning: A Case Study of the Scramword Application,” International Journal in Information Technology in Governance, Education and Business, vol. 6, no. 1, pp. 109–121, 2024, doi: 10.32664/ijitgeb.v6i1.141.
[16] L. Farokhah, “Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan DLib CNN,” Jurnal RESTI, vol. 5, no. 3, pp. 609–614, 2021, doi: 10.29207/resti.v5i3.3125.
[17] F. A. A. Putra, A. G. Sulaksono, L. T. Utomo, and A. R. Khamdani, “Klasifikasi Buah dan Sayur menggunakan Fitur Ekstraksi HOG dan Metode KNN,” JIP (Jurnal Informatika Polinema), vol. 10, no. 1, pp. 45–52, 2023.
[18] M. Paul, S. M. E. Haque, and S. Chakraborty, “Human Detection in Surveillance videos and Its Aplications - A Review,” Eurasip Journal on Advances in Signal Processing, vol. 2013, no. 1, pp. 1–16, 2013, doi: 10.1186/1687-6180-2013-176.
[19] J. F. Palandi, S. Sakaria, and Z. E. Pudyastuti, “Tutorial Merakit Komputer untuk Siswa SMK dengan Teknologi Virtual Reality,” ELANG: Journal ofInterdisciplinary Research, vol. 1, no. 1, pp. 60–68, 2023.
[20] M. Syarif and E. B. Pratama, “Analisis Metode Pengujian Perangkat Lunak Blackbox Testing dan Pemodelan Diagram UML pada Aplikasi Veterinary Services yang Dikembangkan dengan Model Waterfall,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 5, no. 2, pp. 253–258, 2021.