Modeling of a Malaria Parasite Detection System on Microscopic Images of Blood Cells Using Deep Learning Methods
##plugins.themes.bootstrap3.article.main##
Abstract
Microscopic examination is the most common malaria examination technique used in health facilities. However, microscopic examination requires special skills and quite a long time. This research aims to develop a malaria parasite detection system model in blood cell images using deep learning technology to increase the accuracy and speed of detection with the Convolutional Neural Network (CNN) algorithm. This research was carried out in several stages: data collection, image preprocessing, dividing training data and validation data, creating a model using CNN, and evaluating the model. A CNN model was created to classify blood cell images into two classes, namely infected and uninfected. The dataset used as a reference in forming a detection system model uses blood cell images from the open-source Kaggle as many as 11.312 images. The CNN model evaluation results obtained an accuracy value of 97.17% in detecting blood cell images. These results show that the CNN model created can be used to detect malaria parasites using blood cell images.
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The writer agreed that the article copyright by Smatika journal and the writer has the right to disseminate the paper published without permission in advance.
[2] Dinas Kesehatan Kota Banjarmasin, “Profil Kesehatan Tahun 2023 Kota Banjarmasin,” Banjarmasin, 2024.
[3] J. Fitriany and A. Sabiq, “Malaria,” Jurnal Averrous, vol. 4, no. 2, 2018.
[4] J. E. Massamba, J. C. Djontu, C. J. Vouvoungui, C. Kobawila, and F. Ntoumi, “Plasmodium falciparum multiplicity of infection and pregnancy outcomes in Congolese women from southern Brazzaville, Republic of Congo,” Malar J, vol. 21, no. 1, Dec. 2022, doi: 10.1186/s12936-022-04105-w.
[5] J. Patterson and A. Gibson, Deep Learning : A Practitioner’s Approach. 2017. [Online]. Available: www.allitebooks.com
[6] A. W. Setiawan et al., “Deteksi Malaria Berbasis Segmentasi Warna Citra dan Pembelajaran Mesin,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 4, pp. 769–776, Jul. 2021, doi: 10.25126/jtiik.2021844377.
[7] W. Maulana Baihaqi, C. Raras, A. Widiawati, D. P. Sabila, and A. Wati, “Analisis Gambar Sel Darah Berbasis Convolution Neural Network untuk Mendiagnosis Penyakit Demam Berdarah,” Cogito Smart Journal |, vol. 7, no. 1, 2021.
[8] S. Rizal, N. Ibrahim, N. K. C. Pratiwi, S. Saidah, and R. Y. N. Fu’adah, “Deep Learning untuk Klasifikasi Diabetic Retinopathy menggunakan Model EfficientNet,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 8, no. 3, p. 693, Aug. 2020, doi: 10.26760/elkomika.v8i3.693.
[9] A. Nada Nafisa, E. Nia Devina Br Purba, F. Aulia Alfarisi Harahap, and N. Adawiyah Putri, “Implementasi Algoritma Convolutional Neural Network Arsitektur Model MobileNetV2 dalam Klasifikasi Penyakit Tumor Otak Glioma, Pituitary dan Meningioma,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 5, no. 1, pp. 53–61, Mar. 2023, [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/
[10] P. Sarah Fransisca and N. Matondang, “Deteksi Citra Digital Penyakit Cacar Monyet menggunakan Algoritma Convolutional Neural Network dengan Arsitektur MobileNetV2,” Jurnal Ilmu Komputer dan Agri-Informatika, vol. 10, no. 2, pp. 200–211, 2023, [Online]. Available: http://journal.ipb.ac.id/index.php/jika
[11] R. Soekarta, M. Yusuf, M. Fadli Hasa, and N. Annisa Basri, “Implementasi Deep Learning Untuk Deteksi Jenis Obat Menggunakan Algoritma CNN Berbasis Website,” JIKA (Jurnal Informatika), vol. 7, no. 4, pp. 455–464, Nov. 2023.
[12] N. Sulaksono and A. Kurniawati, “Penerapan Artificial Intelligence dalam Mendeteksi Batu Ginjal secara Otomatis pada Citra CT Scan,” Jurnal Imejing Diagnostik, vol. 10, pp. 42–46, 2024, [Online]. Available: http://ejournal.poltekkes-smg.ac.id/ojs/index.php/jimed/index
[13] A. A. Handoko, M. A. Rosid, and U. Indahyanti, “Implementasi Convolutional Neural Network (CNN) Untuk Pengenalan Tulisan Tangan Aksara Bima,” SMATIKA JURNAL, vol. 14, no. 01, pp. 96–110, Jul. 2024, doi: 10.32664/smatika.v14i01.1196.
[14] A. Bagas Prakosa and dan Radius Tanone, “Implementasi Model Deep Learning Convolutional Neural Network (CNN) Pada Citra Penyakit Daun Jagung Untuk Klasifikasi Penyakit Tanaman,” 2023. [Online]. Available: https://www.kaggle.com/datasets/n
[15] S. Septhyan, R. Magdalena, and N. K. C. Pratiwi, “Deep Learning Untuk Deteksi Covid-19, Pneumonia, Dan Tuberculosis Pada Citra Rontgen Dada Menggunakan CNN Dengan Arsitektur Alexnet,” e-Proceeding of Engineering, pp. 2869–2878, Dec. 2022.
[16] Yohannes, S. Devella, and K. Arianto, “Deteksi Penyakit Malaria Menggunakan Convolutional Neural Network Berbasis Saliency,” JUITA:Jurnal Informatika, vol. 8, no. 1, pp. 37–44, May 2020.
[17] N. P. Wulandari and D. Fitrianah, “Analisa Perbandingan Algoritma CNN Dan MLP Dalam Mendeteksi Penyakit COVID-19 Pada Citra X-Ray Paru,” Sains, Aplikasi, Komputasi dan Teknologi Informasi, vol. 3, no. 2, pp. 44–52, Aug. 2021.
[18] A. A. Pratama, Y. Yohanie, F. Panduman, D. K. Basuki, and S. Sukaridhoto, “Edge Computing Implementation for Action Recognition Systems,” Scientific Journal of Informatics, vol. 7, no. 2, pp. 2407–7658, 2020, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji
[19] N. Huda, S. Y. Prayogi, M. A. Ahmad, and A. Y. Dewi, “Klasifikasi Malaria Menggunakan Metode Image Processing Dari Sel Darah Merah Dengan Algoritma Convolutional Neural Network,” JOINS (Journal of Information System), vol. 7, no. 2, pp. 166–177, Nov. 2022, doi: 10.33633/joins.v7i2.7068.
[20] D. P. Ayuni, Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, “Augmentasi Data Pada Implemetasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi,” ZONAsi: Jurnal Sistem Informasi, vol. 5, no. 2, pp. 239–249, 2023.
[21] K. Azmi, S. Defit, and U. Putra Indonesia YPTK Padang Jl Raya Lubuk Begalung-Padang-Sumatera Barat, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” vol. 16, no. 1, p. 2023.