The Use of K-Means and K-Medoids Algorithms for Developing New Student Admissions Promotion Strategies
##plugins.themes.bootstrap3.article.main##
Abstract
New student admission is a crucial activity for universities, especially private universities, in obtaining new students. FTI Unmer Malang has implemented various promotional techniques, but still experiences obstacles in achieving student admission targets. The number of new students fluctuates, with a peak in admission in 2019 and a significant decrease of 23% in the last three years. One of the main problems is the lack of information dissemination to remote areas. To overcome this problem, this study applies a data mining method with clustering to group new student data based on their area of origin. Two clustering algorithms, namely K-Means and K-Medoids, are used to compare clustering results to find the optimal promotion strategy. The data used includes new students from the 2016 to 2022 academic years. The results of the study show that the K-Means algorithm shows better performance than the K-Means algorithm with DBI index accuracy level of 0.344. The results of the study are expected to help FTI Unmer Malang in determining a more effective promotion strategy based on the student's area of origin.
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The writer agreed that the article copyright by Smatika journal and the writer has the right to disseminate the paper published without permission in advance.
[2] Iqbal Fauzy and Himawan Pramaditya, “Peramalan Penerimaan Mahasiswa Baru Dengan Perbandingan Metode Regresi Linier Sederhana Dan Single Eksponential Smoothing,” Jurnal Riset Mahasiswa Bidang Teknologi Informasi, vol. 6, no. 2, 2024.
[3] Muhammad Rizal and Lanihayati Sandiana, “Aplikasi Pemasaran Perumahan Berbasis Teknologi Augmented Reality,” Inspiration: Jurnal Teknologi Informasi dan Komunikasi, vol. 6, no. 2, 2016.
[4] E. F. L. Awalina and W. I. Rahayu, “Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail,” Jurnal Teknologi dan Informasi, vol. 13, no. 2, pp. 122–137, Aug. 2023, doi: 10.34010/jati.v13i2.10090.
[5] R. Mythily, A. Banu, and S. Raghunathan, “Clustering Models for Data Stream Mining,” Procedia Comput Sci, vol. 46, pp. 619–626, 2015, doi: 10.1016/j.procs.2015.02.107.
[6] A. S. Ritonga and I. Muhandhis, “Clustering Data Tweet E-Commerce Menggunakan Metode K-Means (Studi Kasus Akun Twitter Blibli Indonesia),” SMATIKA JURNAL, vol. 12, no. 01, pp. 75–84, Jun. 2022, doi: 10.32664/smatika.v12i01.665.
[7] G. Dwilestari, M. Mulyawan, and I. Ali, “Analisis Clustering menggunakan K-Medoid pada Data Penduduk Miskin Indonesia,” JURSIMA J. Sist. Inf. dan Manaj, vol. 9, no. 3, pp. 282–290, 2021.
[8] T. H. Sardar and Z. Ansari, “An analysis of MapReduce efficiency in document clustering using parallel K-means algorithm,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 200–209, Dec. 2018, doi: 10.1016/j.fcij.2018.03.003.
[9] Eko Prasetyo and Aldo Sahala, Data mining : mengolah data menjadi informasi menggunakan MATLAB. Yogyakarta: ANDI OFFSET, 2014.
[10] Gde Agung Brahmana Suryanegara, Adiwijaya, and Mahendra Dwifebri Purbolaksono, “Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 114–122, Feb. 2021, doi: 10.29207/resti.v5i1.2880.
[11] L. Gayatri and H. Hendry, “Pemetaan Penyebaran Covid-19 Pada Tingkat Kabupaten/Kota Di Pulau Jawa Menggunakan Algoritma K-Means Clustering,” Sebatik, vol. 25, no. 2, pp. 493–499, Dec. 2021, doi: 10.46984/sebatik.v25i2.1307.
[12] Ardi Ramdani, Christian Dwi Sofyan, Fauzi Ramdani, Muhamad Fauzi Arya Tama, and Muhammad Angga Rachmatsyah, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Masyarakat Dalam Menerima Bantuan Sosial,” Jurnal Ilmiah Sistem Informasi, vol. 1, no. 2, pp. 39–47, Jul. 2022, doi: 10.51903/juisi.v1i2.363.