Implementation of Data Mining using the Naïve Bayes Method on Drug Inventory at Kayuagung Regional Hospital
##plugins.themes.bootstrap3.article.main##
Abstract
Hospitals today have widely adopted inventory systems for managing drug supplies, which involve the process of big data analysis to identify relevant patterns, relationships, and trends in the drug inventory data. The goal is to optimize stock management, reduce waste, and ensure the availability of the right medications at the right time. Effective and efficient drug inventory management is a crucial aspect of hospital operations, ensuring timely availability of medications and minimizing the risks of shortages or overstocking. In this study, the Naïve Bayes method was chosen for its ability to handle large and complex datasets and produce accurate predictions. The research process involved several stages: problem identification, problem formulation, data collection, model classification creation, application development, model implementation, research testing, and report preparation. The findings of this study demonstrate the significant potential of data mining in inventory management within the healthcare sector.
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The writer agreed that the article copyright by Smatika journal and the writer has the right to disseminate the paper published without permission in advance.
[2] A. Qurotul, W. Elvira, N. Nazira, I. Ambarani, and S. F. Intan, “Naïve Bayes Classifier ( NBC ) Algorithm Analysis for Prediction Medical Device Sales Analisa Algoritma Naïve Bayes Classifier ( NBC ) Untuk Prediksi Penjualan Alat Kesehatan,” vol. 3, no. 2, pp. 119–126, 2023.
[3] S. A. Pratiwi, A. Fauzi, S. Arum, P. Lestari, and Y. Cahyana, “Prediksi Persediaan Obat Pada Apotek Menggunakan Algoritma Decision Tree,” vol. 4, no. 4, pp. 2381–2388, 2024, doi: 10.30865/klik.v4i4.1681.
[4] D. E. Sinaga, A. P. Windarto, and R. A. Nasution, “Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat ( Studi Kasus : Apotek Franch Farma ),” vol. 2, no. 4, pp. 123–131, 2022.
[5] R. H. Famelia, “Analisis Dan Perancangan Sistem Informasi Akuntansi Persediaan Pada Apotek Waras Menggunakan Metode Fifo,” vol. 2, no. 9, pp. 1–11, 2022.
[6] A. Y. Rahmadhani and L. Mustika, “Rancang Bangun Sistem Informasi Persediaan Obat Pada Apotek Panglima Polem Bandar Lampung,” vol. 1, no. 2, pp. 1–14, 2021.
[7] P. Wisudawaty, “Prediksi Tingkat Produksi Bawang Goreng menggunakan Metode K- Means dan Fuzzy Inference System,” vol. 4, no. 1, 2023, doi: 10.47065/bulletincsr.v4i1.297.
[8] R. F. Rizaldi, S. Busono, and A. S. Fitrani, “Sistem Informasi Inventaris Barang Di UPTD Puskesmas Kemlagi Menggunakan Metode Waterfall,” Smatika Jurnal, vol. 14, no. 01, pp. 13–22, 2024, doi: 10.32664/smatika.v14i01.1128.
[9] A. Saktiadi, “Sistem Informasi Pemesaanan Serta Persediaan Obat-Obatan Pada PT Ariftama Adisentosa Berbasis Website,” vol. 2, no. 3, pp. 1–13, 2022.
[10] S. S. Alamsyah and P. Sukmasetya, “Prediksi Jumlah Kedatangan Pasien Puskesmas Menggunakan Metode Backpropagation Artificial Neural Network,” vol. 4, no. 6, pp. 2842–2849, 2024, doi: 10.30865/klik.v4i6.1922.
[11] I. Fachrina, “Rancang Bangun Aplikasi Data Mining untuk Klasifikasi Pemakaian Obat dengan Metode Naïve Bayes pada Puskesmas Bandar baru,” pp. 1–9.
[12] Sandy, “PENERAPAN ALGORITMA NAIVE BAYES DALAM MEMPREDIKSI PENJUALAN MATERIAL,” 2022.
[13] Nurjoko and F. K. S. Negara, “Implementasi Business Intelligence System pada Restock Gudang Farmasi PT. Pentavalent Menggunakan Algoritma Naïve Bayes 1,2,” vol. 15, no. x, pp. 213–221, 2024.
[14] A. Wijaya, “Implementasi Data Mining Menggunakan Algoritma C4.5 Untuk Memprediksi Penjualan Alat – Alat Telekomunikasi Dan IT (,” pp. 597–606, 2024.