Emotion Detection on Facial Images Using Deep Learning as a Support Tool for Therapy for Individuals with Alexithymia
##plugins.themes.bootstrap3.article.main##
Abstract
Alexithymia is a condition characterized by difficulty in identifying and verbally expressing emotions, which can hinder an individual's ability to understand and manage their emotions. This study aims to implement and develop a model that can detect emotions using the MobileNetV2 architecture for therapy purposes for individuals experiencing alexithymia. The method uses the FER-2013 dataset, which consists of 35,887 grayscale facial images in 7 emotion categories: anger, disgust, fear, happiness, neutral, sadness, and surprise. Using a deep learning approach based on CRISP-DM, the research begins with normalization and data augmentation to improve the model's resilience to image variations. The developed model achieved a training accuracy of 67.7% and a validation accuracy of 65.3%, demonstrating significant capability in recognizing and classifying emotions from facial images. Evaluation using a confusion matrix showed that the model produced a precision of 64.9%, a recall of 65.4%, and an F1-score of 63.7% for each emotion class. This research implies the potential for developing systems that can support psychological therapy, especially to help individuals with alexithymia understand and manage their emotions through facial expression analysis, providing technology sensitive to emotional expressions.
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The writer agreed that the article copyright by Smatika journal and the writer has the right to disseminate the paper published without permission in advance.
[2] T. W. Harjanah, “Hubungan Antara Level Alexithymia Dengan Perilaku Prososial Dewasa Muda.”
[3] Y. M. Lestari, S. Y. Dewi, and A. Chairani, “SCRIPTA SCORE Scientific Medical Journal Penelitian Hubungan Alexithymia dengan Kecanduan Media Sosial pada Remaja di Jakarta Selatan.”
[4] K. Emosional dan Kecenderungan Alexithymia pada Remaja yang tinggal di Panti Asuhan, S. Ayu Novita, T. Suprihatin, A. Fitriani, F. Psikologi, and U. Islam Sultan Agung, “Dipresentasikan dalam Seminar Nasional dan Call for Paper "Penguatan Kesehatan Mental di Masa Pandemi,” 2021.
[5] I. Gusti, A. Agung, M. Pradnyadewi, and P. N. Widiasavitri, “Faktor-faktor Penyebab Alexithymia pada Remaja: Literature Review.”
[6] D. Samur, M. Tops, C. Schlinkert, M. Quirin, P. Cuijpers, and S. L. Koole, “Four decades of research on alexithymia: Moving toward clinical applications,” Front Psychol, vol. 4, no. NOV, 2013, doi: 10.3389/fpsyg.2013.00861.
[7] G. Istiqomah, D. Wahyuni, P. Islam Anak Usia Dini, F. Ilmu Tarbiyah, and U. Raden Fatah Palembang, “Pengenalan Emosi Positif dan Emosi Negatif Pada Anak Usia Dini,” Jurnal Ilmiah Multidisiplin, vol. 3, no. 1, 2023.
[8] A. Larasati, Z. Fahma Auliya, F. Ekonomi, and D. Bisnis, “The influence of the store environment characteristics toward impulse buying, positive emotional response of consumers as a mediation,” 2023.
[9] M. F. Ali and M. Khatun, “Facial Emotion Detection Using Neural Network.” [Online]. Available: http://www.ijser.org
[10] A. B. Jala, T. W. Purboyo, and R. A. Nugrahaeni, “Implementation of Convolutional Neural Network (CNN) Algorithm for Classification of Human Facial Expression in Indonesia,” in 2020 International Conference on Information Technology Systems and Innovation, ICITSI 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 256–262. doi: 10.1109/ICITSI50517.2020.9264940.
[11] G. B. Vasani, P. R. S. Senjaliya, P. V Kathiriya, A. J. Thesiya, and H. H. Joshi, “Human Emotional State Recognition Using Facial Expression Detection,” 2013.
[12] “1712. Gesture - Mengungkap Makna Dibalik Bahasa Tubuh Orang Lain - Zaka Putra Ramdani - The Blackdof (1)[1]”.
[13] L. Zahara, P. Musa, E. Prasetyo Wibowo, I. Karim, and S. Bahri Musa, “The Facial Emotion Recognition (FER-2013) Dataset for Prediction System of Micro-Expressions Face Using the Convolutional Neural Network (CNN) Algorithm based Raspberry Pi,” in 2020 5th International Conference on Informatics and Computing, ICIC 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/ICIC50835.2020.9288560.
[14] C. R. W. Morin and W. Rahardjo, “Kecemasan Sosial, Kecenderungan Alexithymia Dan Adiksi Internet Pada Mahasiswa,” Jurnal Psikologi, vol. 14, no. 1, pp. 11–24, 2021, doi: 10.35760/psi.2021.v14i1.3439.
[15] T. I. Hermanto and Y. Muhyidin, “Analisis Data Sebaran Bandwidth Menggunakan Algoritma Dbscan Untuk Menentukan Tingkat Kebutuhan Bandwidth Di Kabupaten Purwakarta,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 5, no. 2, pp. 130–137, Jul. 2020, doi: 10.36341/rabit.v5i2.1388.
[16] F. B. Hoirot, “Implementasi Mobilenetv2 Untuk Mendeteksi Emosi Pada Anak Autis Melalui Ekspresi Wajah Berbasis Mobile,” Politeknik Negeri Jember, 2024.
[17] A. A. Handoko, M. A. Rosid, and U. Indahyanti, “Implementasi Convolutional Neural Network (CNN) Untuk Pengenalan Tulisan Tangan Aksara Bima,” SMATIKA JURNAL, vol. 14, no. 01, pp. 96–110, Jul. 2024, doi: 10.32664/smatika.v14i01.1196.
[18] T. I. Hermanto and Y. Muhyidin, “Analisis Data Sebaran Bandwidth Menggunakan Algoritma Dbscan Untuk Menentukan Tingkat Kebutuhan Bandwidth Di Kabupaten Purwakarta,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 5, no. 2, pp. 130–137, Jul. 2020, doi: 10.36341/rabit.v5i2.1388.
[19] I. J. Goodfellow et al., “Challenges in representation learning: A report on three machine learning contests,” Neural Networks, vol. 64, pp. 59–63, Apr. 2015, doi: 10.1016/j.neunet.2014.09.005.
[20] O. A. Shawky, A. Hagag, E. S. A. El-Dahshan, and M. A. Ismail, “Remote sensing image scene classification using CNN-MLP with data augmentation,” Optik (Stuttg), vol. 221, Nov. 2020, doi: 10.1016/j.ijleo.2020.165356.
[21] A. M. Saleh and T. Hamoud, “Analysis and best parameters selection for person recognition based on gait model using CNN algorithm and image augmentation,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-020-00387-6.
[22] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond Accuracy, F-score, and ROC: A Family of Discriminant Measures for Performance Evaluation,” 2006. [Online]. Available: www.aaai.org
[23] D. Safitri, S. S. Hilabi, and F. Nurapriani, “Analisis Penggunaan Algoritma Klasifikasi Dalam Prediksi Kelulusan Menggunakan Orange Data Mining,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 8, no. 1, pp. 75–81, Jan. 2023, doi: 10.36341/rabit.v8i1.3009.