Product Recommendation System for Deem Clothing Using the Knowledge-Based Method
##plugins.themes.bootstrap3.article.main##
Abstract
Knowledge-based recommendation systems have become a crucial solution in assisting customers to select products that match their preferences, particularly in the garment industry. This study aims to develop a knowledge-based recommendation system for Deem Clothing's garment products, capable of addressing the challenges of direct product consultation. The study utilizes data obtained through interviews with the owner of Deem Clothing, direct business observations, and an analysis of the product catalog data. The method involves seven product criteria constraints: product type, material type, pattern, design details, color, additional accessories, and sleeve type. The recommendation process is conducted by implementing a simple constraint-based algorithm to generate product similarity scores and rank them from highest to lowest. The results indicate that the developed recommendation system can effectively and efficiently provide product recommendations that align with customer preferences. The conclusion of this study is that knowledge-based recommendation systems can reduce customer dependence on direct consultations, enhance the shopping experience, and optimize the sales process of garment products. The implications of this research for the field of knowledge are that knowledge-based approaches in recommendation systems can be widely applied across various industries to improve customer interaction and satisfaction.
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The writer agreed that the article copyright by Smatika journal and the writer has the right to disseminate the paper published without permission in advance.
[2] L. Safitri, “Analisis SWOT Pengembangan Industri Konveksi Perusahaan Kogaya Dalam Menghadapi Barang Import Dari China,” Jurnal Ekonomi dan Manajemen Sistem Informasi, vol. 1, no. 6, Jul. 2020, doi: 10.31933/JEMSI.
[3] V. Atina and D. Hartanti, “Knowledge Based Recommendation Modeling For Clothing Product Selection Recommendation System,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 5, pp. 1407–1413, Oct. 2022, doi: 10.20884/1.jutif.2022.3.5.584.
[4] W. Indriawan, A. Irham Gufroni, and J. Informatika Fakultas Teknik Universitas Siliwangi Tasikmalaya, “Sistem Rekomendasi Penjualan Produk Pertanian Menggunakan Metode Item Based Collaborative Filtering,” Jurnal Siliwangi, vol. 6, no. 2, 2020.
[5] M. K. Singh and O. P. Rishi, “Event driven recommendation system for E-commerce using knowledge based collaborative filtering technique,” Scalable Computing, vol. 21, no. 3, pp. 369–378, 2020, doi: 10.12694:/scpe.v21i3.1709.
[6] F. Rahmat, A. Bukit, G. Geby, ) Irvan, ) Fahmi, and F. Teknik, “Pembuatan Website Katalog Produk Umkm Untuk Pengembangan Pemasaran Dan Promosi Produk Kuliner Website Creation Product Catalog MSMEs For Marketing And Promotion Development Of Culinary Products 1),” 2019, [Online]. Available: www.imosumut.com.
[7] A. Simangunsong, “Analisa Dan Implementasi Metode Knowledge Base Recomendation Dalam Penerimaan Karyawan,” 2019. [Online]. Available: http://thelittlebomb.blogspot.com/2013/01/pengertian-kepribadian-secara-umum.html
[8] M. Muhith, D. Hartanti, J. Maulindar, P. Pertama, P. Kedua, and P. Ketiga, “Sistem Rekomendasi Pemilihan Paket Instalasi CCTV menggunakan Metode Knowledge Based pada CCTV Center Delanggu.”
[9] A. Naz et al., “Product Recommendation Using Machine Learning a Review of the Existing Techniques,” IJCSNS International Journal of Computer Science and Network Security, vol. 22, no. 5, p. 523, 2022, doi: 10.22937/IJCSNS.2022.22.5.72.
[10] E. Ridhawati, Erlangga, and Y. Syafitri, “Digitalisasi Sistem Marketing Minyak Nilam Dengan Model Perancangan Berbasis Unified Approach Method,” Jurnal Sains Dan Informatika, vol. 7, no. 1, pp. 29–35, 2021, [Online]. Available: https://publikasi.lldikti10.id//index.php/sains
[11] M. Makbul, “OSF Preprints _ Metode Pengumpulan Data dan Instrumen Penelitian,” Jun. 2021, doi: https://doi.org/10.31219/osf.io/svu73.
[12] R. Fakhruddin Rizaldi, S. Busono, A. Senja Fitrani, and P. Korespondensi, “Sistem Informasi Inventaris Barang Di UPTD Puskesmas Kemlagi Menggunakan Metode Waterfall,” vol. 14, no. 1, p. 14, 2024, doi: 10.32664/smatika.v14i01.1128.
[13] M. Uta et al., “Knowledge-based recommender systems: overview and research directions,” 2024, Frontiers Media SA. doi: 10.3389/fdata.2024.1304439.
[14] T. Tri et al., “Efektivitas Sistem Temu Kembali Informasi Perpustakaan Digital Institut Seni Indonesia (ISI) Yogyakarta dalam Tinjauan Recall dan Precision.” [Online]. Available: http://digilib.isi.ac.id/.
[15] K. L. Owa, K. Karyadi, and F. Abdussalaam, “Perancangan Sistem Informasi Akuntansi Persediaan Bahan Baku Kain Hasil Maklon Berbasis Web Pada Perusahaan Manufaktur,” SMATIKA JURNAL, vol. 13, no. 02, pp. 212–224, Dec. 2023, doi: 10.32664/smatika.v13i02.928.