Decision Support System In Selecting Automatic Motorcycles using the Preference Selection Index (PSI) Method
##plugins.themes.bootstrap3.article.main##
Abstract
This research aims to design a Decision Support System for selecting automatic motorbikes using the Preference Selection Index (PSI) Method. In the midst of the rapid development of the automotive industry, especially automatic motorbikes, the PSI method is applied without weighting criteria to help consumers choose motorbikes based on five main criteria. By normalizing data according to the type of cost or benefit criteria, the PSI method offers a simple and effective solution in decision-making processes involving various criteria. The system developed is expected to be able to provide recommendations for automatic motorbikes that suit the user's preferences and needs. The challenge in choosing an automatic motorbike lies in the complexity of considering various important criteria for consumers, such as price, completeness of documents, year of manufacture, condition and authenticity of spare parts. Therefore, this research aims to develop a decision support system that can provide effective motorbike recommendations based on these criteria without weighting. The PSI method is applied to achieve this goal by normalizing data according to the type of cost or benefit criteria, so that it is hoped that the resulting solution can meet the user's preferences and needs in choosing an automatic motorbike.
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The writer agreed that the article copyright by Smatika journal and the writer has the right to disseminate the paper published without permission in advance.
[2] R. Nuraeni and S. Saepudin, “Sistem Pendukung Keputusan Pemilihan Merk Sepeda Motor dengan Metode Simple Additive Weighting (SAW) Pada PT.Glostar Indonesia,” KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 4, no. 1, pp. 217–223, 2023.
[3] Badan Pusat Statistik, “Perkembangan Jumlah Kendaraan Bermotor Menurut Jenis (Unit), 2021-2022.” Accessed: Jun. 03, 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/NTcjMg==/number-of-motor-vehicle-by-type.html
[4] Badan Pusat Statistik, “Jumlah Penduduk menurut Wilayah, Daerah Perkotaan/Perdesaan, dan Jenis Kelamin, INDONESIA, Tahun 2022.” Accessed: Jun. 03, 2024. [Online]. Available: https://sensus.bps.go.id/topik/tabular/sp2022/187/1/0
[5] R. P. Sari and M. R. Darmawan, “Sistem Pendukung Keputusan Pemilihan Bahan Bakar Sepeda Motor Matic Mengunakan Metode Simple Additive Weighting (SAW),” Jurnal Sistem Komputer dan Informatika (JSON), vol. 2, no. 3, p. 311, May 2021, doi: 10.30865/json.v2i3.3028.
[6] Bangkit Jaya Putra, “Penjualan Sepeda Motor Nasional di Januari 2022 Positif, Tembus Angka 443 Ribu Unit.” Accessed: Jun. 03, 2024. [Online]. Available: https://www.oto.com/berita-motor/penjualan-sepeda-motor-nasional-di-januari-2022-positif-tembus-angka-443-ribu-unit
[7] O. A. Halim and W. T. Atmojo, “Penerapan Metode Ahp Pada Sistem Pendukung Keputusan Pemilihan Oli Motor Yamaha N-Max,” JIKA (Jurnal Informatika), vol. 7, no. 1, p. 1, Feb. 2023, doi: 10.31000/jika.v7i1.6625.
[8] M. B. Ryando, A. R. Mariana, and R. A. Hakim, “Sistem Pendukung Keputusan Pemilihan Sepeda Motor Second Terbaik di Kelas Matic 150cc Menggunakan Metode AHP dan TOPSIS,” Academic Journal of Computer Science Research, vol. 5, no. 1, p. 47, Jan. 2023, doi: 10.38101/ajcsr.v5i1.611.
[9] F. Ghina, R. A. Anugrah, D. N. Febrianto, and P. Rosyani, “Sistem Pendukung Keputusan Pemilihan Unit Kendaraan Bermotor Dengan Metode Simple Additve Weighting (SAW),” OKTAL : Jurnal Ilmu Komputer dan Science, vol. 1, no. 12, pp. 2333–2345, 2022, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal
[10] M. L. Mahasinul Akhlak, A. Revina, L. Anthony, N. Oktavia, and A. Sukma, “Analisis Perbandingan Metode Saw, Wp Dan Smart Untuk Pemilihan ‘Sepeda Motor Yamaha Matic 125 CC,’” TRANSFORMASI, vol. 19, no. 2, pp. 77–91, Dec. 2023, doi: 10.56357/jt.v19i2.391.
[11] N. Kumelasri, S. Siswanto, and E. Suryana, “Penerapan Metode Preference Selection Index (PSI) Dalam Pemilihan Anggota Badan Permusyawaratan Desa Kabupaten Bengkulu Selatan,” JURNAL MEDIA INFOTAMA, vol. 19, no. 2, pp. 293–298, Oct. 2023, doi: 10.37676/jmi.v19i2.3996.
[12] F. Dayanti and S. Widodo, “Sistem Pendukung Keputusan Rumah Tangga Miskin (RTM) untuk Program Rastra Di Desa Lolo Menggunakan Metode Weighted Product Berbasis Web,” J-INTECH, vol. 7, no. 01, pp. 35–43, Jun. 2019, doi: 10.32664/j-intech.v7i01.404.
[13] A. Yudistira, “Analisa Dalam Pengambilan Keputusan Penentuan Lokasi Usaha Menggunakan Metode Preference Selection Index (PSI),” Jurnal Ilmiah Computer Science, vol. 1, no. 1, pp. 31–40, Jul. 2022, doi: 10.58602/jics.v1i1.4.
[14] M. A. Abdullah and R. T. Aldisa, “Perbandingan Metode Preference Selection Index dan Kombinasi Preference Selection Index dan TOPSIS dalam Penilaian Kinerja Karyawan Hotel,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 3, no. 6, pp. 1080–1087, 2023, doi: 10.30865/klik.v3i6.960.
[15] A. K. Estetikha, K. Kusrini, and A. H. Muhammad, “Metode Preference Selection Index Dalam Menentukan Distribusi Alat Pelindung Diri di Yogyakarta,” Journal of Information Systems and Informatics, vol. 3, no. 4, pp. 740–749, Dec. 2021, doi: 10.51519/journalisi.v3i4.216.