Implementation of Fuzzy Logic to Determine the Amount of Bread Production Using Tsukamoto Method
##plugins.themes.bootstrap3.article.main##
Abstract
In an effort to improve the sustainability of the product manufacturing business, an appropriate strategy is needed to avoid losses due to wrong policies. This research proposes the application of Tsukamoto fuzzy logic as a solution to determine bread production based on inventory and demand. Bread, as a product with a short expiration period, requires smart production management to avoid waste and losses. Many bakeries still adopt the traditional way without considering fluctuations in market demand, which may result in overproduction or stock shortages. This research takes the case of Sarinda bakery, which is experiencing challenges in coping with market demand fluctuations. Through the use of the Tsukamoto fuzzy method, the results showed an accuracy rate of 93.06%, with a Mean Absolute Percentage Error (MAPE) of 6.94%, a very good category. This method proves its effectiveness in helping entrepreneurs determine the amount of bread production in accordance with changing market conditions, without the need to add many existing production facilities. The use of Tsukamoto fuzzy logic in this context can be a smart solution to improve bread production efficiency and optimize business profits.
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The writer agreed that the article copyright by Smatika journal and the writer has the right to disseminate the paper published without permission in advance.
[2] V. M. Nasution and G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,” Jurnal Media Informatika Budidarma, vol. 4, no. 1, pp. 129–135, 2020, doi: 10.30865/mib.v4i1.1719.
[3] S. B. Mursalin, H. Sunardi, and Zulkifli, “Sistem Penyiraman Tanaman Otomatis Berbasis Sensor Kelembaban Tanah Menggunakan Logika Fuzzy,” Jurnal Ilmiah Informatika Global, vol. 11, no. 01, pp. 47–54, 2020.
[4] Y. E. Setiawan, “Sistem Pendukung Pengambilan Keputusan Rekrutmen Guru Menggunakan Logika Fuzzy Tahani,” Barekeng: Jurnal Ilmu Matematika Dan Terapan, vol. 14, no. 2, pp. 253–266, 2020.
[5] Sunanto, R. Firdaus, and M. S. Siregar, “Implementasi Logika Fuzzy Mamdani Pada Kendali Suhu dan Kelembaban Ruang Server,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 2, no. 2, pp. 128–136, 2020.
[6] A. Sutiari, “Layanan Diagnosa Deteksi Penyakit Jantung Dengan Forward Chaining Dan Fuzzy Logic Mamdani Berbasis Mobile,” J-Intech, vol. 8, no. 01, pp. 12–18, 2020, doi: 10.32664/j-intech.v8i01.465.
[7] K. Yudhistiro and H. Pamuntjar, “Sistem Inferensi Fuzzy Mamdani Untuk Penunjang Keputusan Penentuan Potensi Desa Di Kabupaten Malang,” Smatika Jurnal, vol. 9, no. 01, pp. 28–38, 2019, doi: 10.32664/smatika.v9i01.244.
[8] F. Pradana, F. A. Bachtiar, and E. R. Widasari, “Fuzzy Tsukamoto Implementation to Detect Physiological Condition on IoT - Based e - Learning Users,” International Journal of Information and Education Technology, vol. 12, no. 7, pp. 663–667, 2022, doi: 10.18178/ijiet.2022.12.7.1668.
[9] L. M. Silalahi, D. Jatikusumo, S. Budiyanto, F. A. Silaban, I. U. V. Simanjuntak, and A. D. Rochendi, “Internet of things implementation and analysis of fuzzy Tsukamoto in prototype irrigation of rice,” International Journal of Electrical and Computer Engineering, vol. 12, no. 6, pp. 6022–6033, 2022, doi: 10.11591/ijece.v12i6.pp6022-6033.
[10] A. D. Permana, V. M. Nasution, and G. Prakarsa, “Design and Development of Fuzzy Logic Application Tsukamoto Method in Predicting the Number of Covid-19 Positive Cases in West Java,” International Journal of Global Operations Research, vol. 1, no. 2, pp. 85–95, 2020.
[11] P. Gloria and E. Sediyono, “Perancangan Sistem Rekomendasi Pemberian Beasiswa dengan Metode Fuzzy Tsukamoto,” Journal of Information Technology Ampera, vol. 3, no. 2, pp. 124–147, 2022.
[12] A. Aditya and F. E. Purwiantono, “The Application of Fuzzy-Analytical Hierarchy Process Method for Majors Selection at Public Universities,” Journal of Informatics and Telecommunication Engineering, vol. 3, no. 2, pp. 240–251, 2020, doi: 10.31289/jite.v3i2.3245.
[13] D. L. Rahakbauw, “Penerapan Logika Fuzzy Metode Sugeno Berdasarkan Data Persediaan Dan Jumlah Permintaan ( Studi Kasus : Pabrik Roti Sarinda Ambon ),” Barekeng: Jurnal Ilmu Matematika dan Terapan, vol. 9, no. 2, pp. 121–134, 2015.
[14] E. Mulyatiningsih, Metode penelitian terapan bidang pendidikan. Yogyakarta: UNY Press, 2015.
[15] A. F. Djollong, “Tehnik Pelaksanaan Penelitian Kuantitatif,” Istiqra: Jurnal Pendidikan Dan Pemikiran Islam, vol. 2, no. 1, pp. 86–100, 2014.
[16] F. Susilo, Himpunan dan Logika Kabur Serta Aplikasinya. Yogyakarta: Graha Ilmu, 2003.
[17] A. T. P. Abza, “Industri Televisi Berlangganan Dengan Logika Fuzzy,” Jurnal Intra Tech, vol. 2, no. 1, pp. 16–30, 2018.
[18] S. Jayanti and S. Hartati, “Sistem Pendukung Keputusan Seleksi Anggota Paduan Suara Dewasa Menggunakan Metode Fuzzy Mamdani,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 6, no. 1, 2012, doi: 10.22146/ijccs.2141.
[19] L. K. Wardhani and E. Haerani, “Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic,” Seminar Nasional Teknologi Informasi Komunikasi dan Industri, 2011.
[20] S. Kusumadewi and H. Purnomo, Aplikasi Logika Fuzzy untuk Pendukung Keputusan, 2nd ed. Yogyakarta: Graha Ilmu, 2010.
[21] M. D. Andikarama, Y. Rizki, and H. Mukhtar, “Penerapan Metode Logika Fuzzy dalam mengolah pilihan pada Game Visual Novel Informasi Penerimaan Mahasiswa Baru Fakultas Ilmu Komputer Universitas Muhammadiyah Riau sebagai Sarana Evaluasi Mandiri,” Jurnal Fasilkom, vol. 10, no. 1, pp. 42–53, 2020.