K-Means Clustering Algorithm Measuring the Satisfaction Level of MNC TV Muslim I'murojaah Program Viewers
##plugins.themes.bootstrap3.article.main##
Abstract
Television remains one of the most influential mass media platforms for disseminating information and entertainment to the public, with one notable example being the I’Murojaah program aired by Muslim TV on MNC Channels. The objectives of this study are to identify the level of viewer satisfaction with the I’Murojaah program, determine the indicators influencing viewer satisfaction, classify viewers based on their satisfaction levels, and provide recommendations to program managers to improve quality and viewer satisfaction. This study employs a qualitative approach using the K-Means Clustering algorithm. The data used in this study were obtained through a survey distributed to 100 respondents, covering several viewer satisfaction indicators such as content quality (6 questions) and program presentation (6 questions). The collected data were then grouped and analyzed. The results of the first cluster iteration distance calculation consisted of 84 viewers who were very satisfied, while the second cluster consisted of 16 viewers with relatively low satisfaction levels. The Davies Bouldin Index values were -0.674 for class 2 clustering, -2.001 for class 3 clustering, -1.961 for class 4 clustering, and clustering class 5 (-2.000). In conclusion, the best clustering performance results were for classes 2, 3, 4, and 5. The smallest Davies Bouldin Index value was for clustering class 2. Recommendations for program improvement include enhancing image and sound quality, ensuring that the equipment and technology used can produce optimal quality.
##plugins.themes.bootstrap3.article.details##
[2] A. Setiawan, Dani E;Mais, “Pengaruh Tingkat Kehadiran Siswa Terhadap Efektivitas Proses Pembelajaran Siswa Kelas IV Tunagrahita Ringan dalam Kelas Reguler SD Inklusi di Kabupaten Jember,” Journal Of special Education, vol. 1, pp. 28–33, 2017.
[3] D. Multi Purnamasari, Ningsi; Syauqi, Achmad,Ardian Pramana, “Pengelompokan Data Calon Siswa Baru Di Sekolah Menengah Kejuruan menggunakan Algoritma K-Means,” Jurnal Sistem Informasi dan Teknologi Peradaban, vol. 4, no. 1, p. 24, 2023.
[4] F. Helmi, “Analisis dan Penerapan Algoritma K-Means Clustering Sebagai Strategi Promosi Penerimaan Mahasiswa Baru Pada Universitas Wiraraja,” vol. 2, no. 1, p. 1, 2023.
[5] S. Ghozy Fadilah, Ahmad; Santi Wahyuni, Febriana; Achmadi, “IMPLEMENTASI METODE K-MEANS CLUSTERING UNTUK PENGELOMPOKAN KELAS BERDASARKAN PEMAHAMAN SISWA PADA BIMBINGAN BELAJAR MATEMATIKA SASCHIO BANYUWANGI,” jurnal Mahasiswa Teknik Informatika, vol. 6, no. 2, p. 1072, 2022.
[6] S. Tandy, Juliana;Assegaff, “Analisis Dan Perancangan Clustering Siswa Baru Menggunakan Metode K-Means Pada SMK Negeri 1 Kota Jambi,” Jurnal Manajemen Sistem Informasi, vol. 4, no. 4, p. 389, 2019.
[7] G. Loho, Civita;Peggie Rantung, Vivi ; Caren Rorimpandey, “Data Mining Rekomendasi Sekolah Calon Siswa SMA di Kota Tomohon Menggunakan Metode K-Means Clustering,” JOURNAL OF INFORMATICS ENGINEERING, vol. 3, no. 1, p. 30, 2022.
[8] M. Hanif Abdurrohman, H. Elin, S. Fadhilah, and O. Lola, “IMPLEMENTASI K-MEANS CLUSTERING PADA DATA PENGELOMPOKAN PENDAFTARAN MAHASISWA BARU (STUDI KASUS UNIVERSITAS ABDURRAB),” Jurnal Teknologi dan Sistem Informasi Univrab, vol. 9, no. 1, pp. 138–147, 2024, [Online]. Available: https://core.ac.uk/download/599480649.pdf
[9] D. I. Masruri, S. Widodo, and F. E. Purwiantono, “Implementasi k-Means Untuk Sistem Informasi Penyebaran Penyakit Epidemi Di Kota Malang,” J-Intech, vol. 9, no. 02, pp. 101–107, 2021, doi: 10.32664/j-intech.v9i02.638.
[10] D. P. Dewi, I. H. Santi, and W. D. Puspitasari, “Perhitungan Penilaian Tingkat Kepuasan Pelanggan Dengan Menerapkan Algoritma K-Means,” J-Intech, vol. 11, no. 2, pp. 257–265, 2023, doi: 10.32664/j-intech.v11i2.981.
[11] V. P. Ramadhan and G. M. Namung, “Klasterisasi Komentar Cyberbullying Masyarakat di Instagram berdasarkan K-Means Clustering,” J-INTECH, vol. 11, no. 1, pp. 32–39, Jul. 2023, doi: 10.32664/j-intech.v11i1.846.
[12] R. Suriadi; Muzayyin Maq,Mumu ; Randi, Karina,Mila ; Rais, “Pelatihan Teknis Pembuatan Kuosioner Penelitian Melalui Aplikasi Google Form Dalam Meningkatkan Kualitas Hasil Penelitian Bagi Dosen Pemula Di Era Digital,” Journal of Human And Education, vol. 4, no. 3, 2024.
[13] K. Saharuddin; w. Prihatmono, Medy;, “ANALISIS USABILITY GOOGLE-CLASSRROOM MENGGUNAKAN METODE SKALA LIKERT,” Jurnal Informatika Progres, vol. 12, no. 2, p. 53, 2020.
[14] N. F. Amin, S. Garancang, and K. Abunawas, “KONSEP UMUM POPULASI DAN SAMPEL DALAM PENELITIAN,” Jurnal Kajian Islam Kontemporer, 2023.
[15] B. Hakim, “Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning,” Journal of Business and Audit Information Systems, vol. 4, no. 2, p. 16, 2021.
[16] F. Yunita, “PENERAPAN DATA MINING MENGGUNKAN ALGORITMA K-MEANS CLUSTRING PADA PENERIMAAN MAHASISWA BARU,” SISTEMASI, vol. 7, no. 3, p. 238, Sep. 2018, doi: 10.32520/stmsi.v7i3.388.
[17] H. Haviluddin, S. J. Patandianan, G. M. Putra, N. Puspitasari, and H. S. Pakpahan, “Implementasi Metode K-Means Untuk Pengelompokkan Rekomendasi Tugas Akhir,” Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol. 16, no. 1, p. 13, Mar. 2021, doi: 10.30872/jim.v16i1.5182.
[18] R. W. Sari, A. Wanto, and A. P. Windarto, “IMPLEMENTASI RAPIDMINER DENGAN METODE K-MEANS (STUDY KASUS: IMUNISASI CAMPAK PADA BALITA BERDASARKAN PROVINSI),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, Oct. 2018, doi: 10.30865/komik.v2i1.930.
[19] R. Pratama and I. Asror, “Deteksi SMS Spam dengan Menggunakan Metode Vector Space Model dengan K-Means Clustering.”
[20] Rapidminer, “RapidMiner for Academics,” 2022.
[21] N. A. Zaqiwali, Bustommy;Puspadarmaja, “Representasi Platform Video Streaming dalam Kepuasan Penonton,” Jurnal Syntax Admiration, vol. 2, no. 7, 2021.
[22] Dito Putro Utomo; Mesran Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, 2020.
[23] E. Buulolo, Data Mining Untuk Perguruan Tinggi. Sleman: CV Budi Utama, 2020. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=-K_SDwAAQBAJ&oi=fnd&pg=PP1&dq=Buulolo+2020&ots=Kezq5Rx3Qk&sig=O70NsVBl38e-bhW-3r7uQB-0EHU&redir_esc=y#v=onepage&q=Buulolo%202020&f=false