Analysis of the Effectiveness of Traditional and Ensemble Machine Learning Models for Mushroom Classification

##plugins.themes.bootstrap3.article.main##

Neny Sulistianingsih Galih Hendro Martono

Abstract

The classification of edible versus poisonous mushrooms presents a critical challenge in the domains of applied biology and public health, particularly due to the serious implications of misidentification. This research employs the UCI Mushroom Dataset to evaluate and compare the effectiveness of several machine learning models, including traditional algorithms like Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors and Naïve Bayes, as well as advanced ensemble techniques such as Stacking and Voting Classifier. Notably, both Random Forest and Stacking achieved flawless accuracy, reaching 100%, underscoring the high predictive capacity of these models in complex categorical scenarios. Conversely, Naïve Bayes exhibited significantly weaker performance—achieving only 59.8% accuracy—likely due to its underlying assumption of feature independence, which does not hold for this dataset. The ensemble learning approaches, including the combination of Stacking and Bagging, not only preserved but also enhanced model robustness and generalization. These methods effectively leverage the complementary strengths of individual learners to yield more accurate and stable predictions while mitigating overfitting risks. Comparative analysis with previous research confirms the consistency of these findings and reinforces the viability of ensemble strategies for handling intricate classification tasks. Overall, this study highlights the importance of algorithm selection tailored to data characteristics and supports the use of ensemble learning to boost predictive reliability.

##plugins.themes.bootstrap3.article.details##

Section
Articles
References
[1] Z. Yan, H. Liu, J. Li, and Y. Wang, “Application of Identification and Evaluation Techniques for Edible Mushrooms: A Review,” 2023, Taylor and Francis Ltd. doi: 10.1080/10408347.2021.1969886.
[2] R. Gürfidan and Z. Akçay, “Real-time Deep Learning Based Mobile Application for Detecting Edible Fungi: Mushapp,” International Journal of Intelligent Systems and Applications, vol. 16, no. 5, pp. 1–9, Oct. 2024, doi: 10.5815/ijisa.2024.05.01.
[3] S.-T. Chang and S. P. Wasser, “The Role of Culinary-Medicinal Mushrooms on Human Welfare with a Pyramid Model for Human Health,” Int J Med Mushrooms, vol. 14, no. 2, pp. 95–134, 2012, doi: 10.1615/IntJMedMushr.v14.i2.10.
[4] Y. Zhang, C. Venkitasamy, Z. Pan, and W. Wang, “Recent developments on umami ingredients of edible mushrooms – A review,” Trends Food Sci Technol, vol. 33, no. 2, pp. 78–92, Oct. 2013, doi: 10.1016/j.tifs.2013.08.002.
[5] I. P. Putra, “kasus-Kasus Keracunan Jamur Liar di Indonesia,” Jurnal Ekologi Kesehatan, vol. 20, no. 3, pp. 215–230, Mar. 2022, doi: 10.22435/jek.v20i3.4943.
[6] I. P. Putra, “Laporan kasus keracunan Chlorophyllum cf. molybdites di Surabaya, Indonesia,” Jurnal Agercolere, vol. 3, no. 1, pp. 1–6, Feb. 2021, doi: 10.37195/jac.v3i1.120.
[7] S. Jehadu and Krisiandi, “Kadinkes Sebut 6 Warga Keracunan Usai Makan Jamur di Sikka Sudah Sembuh Artikel ini telah tayang di Kompas.com dengan judul ‘Kadinkes Sebut 6 Warga Keracunan Usai Makan Jamur di Sikka Sudah Sembuh’, Klik untuk baca: https://regional.kompas.com/read/2023/03/02/150839078/kadinkes-sebut-6-warga-keracunan-usai-makan-jamur-di-sikka-sudah-sembuh. Kompascom+ baca berita tanpa iklan: https://kmp.im/plus6 Download aplikasi: https://kmp.im/app6,” Kompas, Sikka, Mar. 02, 2023.
[8] A. Rohman, “17 warga Kebon Kalapa Sukabumi keracunan jamur,” ANTARA, Sukabumi, Dec. 25, 2024.
[9] N. J. Pinky, S. M. M. Islam, and R. S. Alice, “Edibility Detection of Mushroom Using Ensemble Methods,” International Journal of Image, Graphics and Signal Processing, vol. 11, no. 4, pp. 55–62, 2019, doi: 10.5815/ijigsp.2019.04.05.
[10] R. Hamonangan, M. Bagus Saputro, C. Bagus, S. Dinata, and K. Atmaja, “Accuracy of classification poisonous or edible of mushroom using naïve bayes and K-nearest neighbors.”
[11] F. T. Admojo, M. L. Radhitya, H. Zein, and A. Naswin, “Classification of Mushroom Edibility Using K-Nearest Neighbors: A Machine Learning Approach,” Indonesian Journal of Data and Science, vol. 5, no. 3, pp. 243–250, Dec. 2024, doi: 10.56705/ijodas.v5i3.199.
[12] T. A. Mir, D. Banerjee, R. Chauhan, and H. S. Pokhariya, “A Novel Framework for Automated Mushroom Disease Diagnosis using CNN and Random Forest,” in 2024 4th Asian Conference on Innovation in Technology, ASIANCON 2024, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/ASIANCON62057.2024.10838126.
[13] M. S. Tuna and A. Kristianto, “Klasifikasi Cuaca Berbasis Citra dengan Model CNN LeNet-5 yang Dimodifikasi,” J-Intech : Journal of Information and Technology, no. 204, pp. 401–410, 2022.
[14] M. Arslan et al., “A Comparative Study of Machine Learning Methods for Optimizing Mushroom Classification”, doi: 10.56979/801/2024.
[15] Y. Rakesh Kumar, V. Chandrashekar, and N. Vemula, “Mushroom Disease Detection and Classification Using Machine Learning Techniques,” in IEEE International Conference on Data Engineering and Communication Systems, ICDECS 2024, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/ICDECS59733.2023.10503469.
[16] V. Moysiadis, G. Kokkonis, S. Bibi, I. Moscholios, N. Maropoulos, and P. Sarigiannidis, “Monitoring Mushroom Growth with Machine Learning,” Agriculture (Switzerland), vol. 13, no. 1, Jan. 2023, doi: 10.3390/agriculture13010223.
[17] W. Werapan, U. Suksawatchon, S. Srikamdee, and J. Suksawatchon, “DeepThaiMush: A Deep Learning Approach to Classify Poisonous and Edible Mushrooms using YOLOv8,” in 7th International Conference on Information Technology, InCIT 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 75–80. doi: 10.1109/InCIT60207.2023.10413176.
[18] Y. Wang, L. Yang, H. Chen, A. Hussain, C. Ma, and M. Al-Gabri, “Mushroom-YOLO: A deep learning algorithm for mushroom growth recognition based on improved YOLOv5 in agriculture 4.0,” in IEEE International Conference on Industrial Informatics (INDIN), Institute of Electrical and Electronics Engineers Inc., 2022, pp. 239–244. doi: 10.1109/INDIN51773.2022.9976155.
[19] L. Breiman, “Random Forest,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
[20] J. E. Simarmata, G.-W. Weber, and D. Chrisinta, “Performance Evaluation of Classification Methods on Big Data: Decision Trees, Naive Bayes, K-Nearest Neighbors, and Support Vector Machines,” Jurnal Matematika, Statistika dan Komputasi, vol. 20, no. 3, pp. 623–638, May 2024, doi: 10.20956/j.v20i3.32970.
[21] D. Opitz and R. Maclin, “Popular Ensemble Methods: An Empirical Study,” Journal of Artificial Intelligence Research, vol. 11, pp. 169–198, Aug. 1999, doi: 10.1613/jair.614.