Image-Based Weather Classification with Modified LeNet-5 CNN Model

##plugins.themes.bootstrap3.article.main##

Miranda Sahfira Tuna Aries Kristianto

Abstract

The development of technology in the field of weather information is needed especially for all aspects of life. To recognize, study, and detect weather conditions that occur, classification techniques with the help of artificial intelligence are needed. The classification model used is a convolutional neural network (CNN) with a modified LeNet-5 architecture. The purpose of this study is to test the performance of the model for the classification of sunny, cloudy, cloudy and rainy weather conditions, as well as to determine the resulting accuracy and its application. With this model. The image size used is 224x224, batch size 32, learning rate 0.0001 and trained with 50 epochs. In the model training process, 8 different scenarios were created involving augmentation and no augmentation techniques, as well as the use of one of the callbacks functions in the form of earlystopping. The CNN model that uses augmentation and earlystopping with a patience value of 5 produces the best performance because it achieves an accuracy of up to 94%. The model is implemented on a locally hosted website and produces predictions that match the weather conditions that occur

##plugins.themes.bootstrap3.article.details##

Section
Articles
References
Alwanda, M. R., Ramadhan, R. P. K., & Alamsyah, D. (2020). Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle. Jurnal Algoritme, 1(1), 45–56. https://doi.org/10.35957/algoritme.v1i1.434
An, J., Chen, Y., & Shin, H. (2018). Weather Classification using Convolutional Neural Networks. 2018 International SoC Design Conference (ISOCC), 245–246. https://doi.org/10.1109/ISOCC.2018.8649921
Budi, R. S., Patmasari, R., & Saidah, S. (2021). Klasifikasi Cuaca Menggunakan Metode Convolutional Neural Network. EProceedings of Engineering.
Dama, H. R. A., Supianto, A. A., & Setiawan, N. Y. (2021). Analisis Penggunaan Model Regresi untuk Prediksi Penjualan Spare Part pada AHASS Nur Andhita Grogol. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(12).
Heryadi, Y., & Irwansyah, E. (2020). Deep Learning: Aplikasinya di Bidang Geospasial. AWI Technology Press.
IBRAHIM, N., SA’IDAH, S., HIDAYAT, B., & DARANA, S. (2022). Klasifikasi Grade Telur Ayam Negeri secara non- Invasive menggunakan Convolutional Neural Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(2), 297. https://doi.org/10.26760/elkomika.v10i2.297
Indriani.S, D. D., Sinaga, E. J. A., Oktavia, G., Syahputra, H., & Ramadhani, F. (2024). Identifikasi Tanda Tangan Dengan Menggunakan Metode Convolution Neural Network (CNN). J-INTECH, 12(1), 138–147. https://doi.org/10.32664/j-intech.v12i1.1273
Jaya, H., Sabran, S., Idris, Muh. M., Djawad, Y. A., Ilham, A., & Ahmar, A. S. (2018). KECERDASAN BUATAN. Fakultas MIPA Universitas Negeri Makassar.
Kamath, U., Liu, J., & Whitaker, J. (2019). Deep learning for NLP and speech recognition. Springer. https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2544726
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
Marcella, D., Yohannes, Y., & Devella, S. (2022). Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Dengan Arsitektur VGG-19. Jurnal Algoritme, 3(1), 60–70. https://doi.org/10.35957/algoritme.v3i1.3331
Naufal, M. F. (2021). Analisis Perbandingan Algoritma SVM, KNN, dan CNN untuk Klasifikasi Citra Cuaca. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(2), 311–318. https://doi.org/10.25126/jtiik.2021824553
Naufal, M. F., & Kusuma, S. F. (2022). Weather image classification using convolutional neural network with transfer learning. 050004. https://doi.org/10.1063/5.0080195
Rizal, F., Hasyim, F., Malik, K., & Yudistira, Y. (2022). Implementasi Algoritma Convolutional Neural Networks (CNN) Untuk Klasifikasi Batik. COREAI: Jurnal Kecerdasan Buatan, Komputasi Dan Teknologi Informasi, 2(2), 40–47. https://doi.org/10.33650/coreai.v2i2.3365
Sewak, M., Karim, Md. R., & Pujari, P. (2018). Practical Convolutional Neural Networks: Implement advanced deep learning models using Python. Packt Publishing.
Sharma, A., & Ismail, Z. S. (2022). Weather Classification Model Performance: Using CNN, Keras-Tensor Flow. ITM Web of Conferences, 42, 01006. https://doi.org/10.1051/itmconf/20224201006
Suryanto. (2014). Artificial Intelligence : Searching, Reasoning, Planning, Dan Learning . Informatika.
Suyanto, Ramadhani, K. N., & Mandala, S. (2019). Deep learning : modernisasi machine learning untuk big data. Penerbit Informatika Bandung.
Wibawa, M., Sunarmi, S., & Soewarlan, S. (2024). Transformasi Digital Sebagai Strategi Kenusantaraan Warisan Budaya: Studi AI Pada Kereta Kencana Paksi Naga Liman. MAVIS : Jurnal Desain Komunikasi Visual, 6(01), 1–11. https://doi.org/10.32664/mavis.v6i01.1187