Implementation of Multi-Layer Perceptron and Discretization in Software Defect Prediction
##plugins.themes.bootstrap3.article.main##
Abstract
Software defects are one of the main causes of information technology waste, posing a major challenge in software development as they can degrade the quality of the software itself. To reduce costs and efforts in software development and maintenance, predicting software defects is the best approach. Multi-Layer Perceptron (MLP) is a type of artificial neural network that can be used to learn complex and non-linear patterns in input data. It excels in modeling complex and non-linear relationships in data, as well as automatically extracting features and handling problems that cannot be solved by linear models. One of the preprocessing steps to optimize MLP is data discretization, which involves dividing the range of attributes into intervals to reduce the number of numerical attributes to categorical data. Testing results with five types of data from NASA MDP (CM1, JM1, KC1, KC2, and PC1) showed significant accuracy improvements. In the CM1 dataset, accuracy increased to 96.1% compared to using MLP alone, which achieved 91.1%. In the JM1 dataset, accuracy increased to 79.1% compared to MLP alone, which achieved 78.3%. In the KC1 data, accuracy increased to 88.5% compared to MLP alone, which achieved 85.9%. In the KC2 dataset, MLP with discretization achieved an accuracy of 89.8%, better than MLP alone at 84.8%. In the PC1 data, the highest accuracy obtained was 95.5% compared to MLP alone, which achieved 94.3%.
##plugins.themes.bootstrap3.article.details##
Ainun, N., Rismayanti, & Lestari, D. Y. (2021). Implementasi Model JST Dalam Menentukan Bantuan Langsung Tunai Menggunakan Algortima Multilayer Perceptron Pada Desa Karang Anyar Kec. Aek Kuo. ProsidingSNASTIKOM: Seminar Nasional Teknologi Informasi & Komunikasi, 320–325.
Berka, P., & Bruha, I. (1998). Discretization and grouping: Preprocessing steps for data mining. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1510, 239–245. https://doi.org/10.1007/bfb0094825
Christiawan, G. Y., Putra, R. A., Sulaiman, A., Poerbaningtyas, E., & Putri Listio, S. W. (2023). Penerapan Metode Convolutional Neural Network (CNN) Dalam Mengklasifikasikan Penyakit Daun Tanaman Padi. J-Intech, 11(2), 294–306. https://doi.org/10.32664/j-intech.v11i2.1006
Faiza, I. M., Gunawan, G., & Andriani, W. (2022). Tinjauan Pustaka Sistematis: Penerapan Metode Machine Learning untuk Deteksi Bencana Banjir. Jurnal Minfo Polgan, 11(2), 59–63. https://doi.org/10.33395/jmp.v11i2.11657
Gulo, S. H., Lubis, A. H., Informatika, T., Teknik, F., & Area, U. M. (2024). Penerapan Multi-Layer Perceptron untuk Mengklasifikasi Penduduk Kurang Mampu. 4(2), 51–59.
Hardoni, A., & Rini, D. P. (2020). Integrasi Pendekatan Level Data Pada Logistic Regression Untuk Prediksi Cacat Perangkat Lunak. JIKO (Jurnal Informatika Dan Komputer), 3(2), 101–106. https://doi.org/10.33387/jiko.v3i2.1734
Hardoni, A., Rini, D. P., & Sukemi, S. (2021). Integrasi SMOTE pada Naive Bayes dan Logistic Regression Berbasis Particle Swarm Optimization untuk Prediksi Cacat Perangkat Lunak. Jurnal Media Informatika Budidarma, 5(1), 233. https://doi.org/10.30865/mib.v5i1.2616
Hari Agus Prastyo, E., Suhartono, S., Faisal, M., Yaqin, M. A., & Firdaus, R. A. J. (2024). Naive Bayes Classification Untuk Prediksi Cacat Perangkat Lunak. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 9(2), 782–791. https://doi.org/10.29100/jipi.v9i2.5508
Kusuma, J., Hayadi, B. H., Wanayumini, W., & Rosnelly, R. (2022). Komparasi Metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk Klasifikasi Kanker Payudara. MIND Journal, 7(1), 51–60. https://doi.org/10.26760/mindjournal.v7i1.51-60
Muhamad, F. P. B., Siahaan, D. O., & Fatichah, C. (2018). Software Fault Prediction Using Filtering Feature Selection in Cluster-Based Classification. IPTEK Journal of Proceedings Series, 4(1), 59. https://doi.org/10.12962/j23546026.y2018i1.3508
Pambudi, H. K., Kusuma, P. G. A., Yulianti, F., & Julian, K. A. (2020). Prediksi Status Pengiriman Barang Menggunakan Metode Machine Learning. Jurnal Ilmiah Teknologi Infomasi Terapan, 6(2), 100–109. https://doi.org/10.33197/jitter.vol6.iss2.2020.396
Prasetyo, R., Nawawi, I., Fauzi, A., & Ginabila, G. (2021). Komparasi Algoritma Logistic Regression dan Random Forest pada Prediksi Cacat Software. Jurnal Teknik Informatika UNIKA Santo Thomas, 06(Siringoringo 2017), 275–281. https://doi.org/10.54367/jtiust.v6i2.1522
Purnama, I. N. (2021). Perbandingan Klasifikasi Website Secara Otomatis Menggunakan Metode Multilayer Perceptron dan Naive Bayes. Jurnal Sistem Komputer Dan Informatika (JSON), 2(2), 155–161. https://doi.org/10.30865/json.v2i2.2703
Puteri, A. N., Arizal, A., & Achmad, A. D. (2021). Feature Selection Correlation-Based pada Prediksi Nasabah Bank Telemarketing untuk Deposito. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 335–342. https://doi.org/10.30812/matrik.v20i2.1183
Rasna, & Matdoan, Moh. R. I. (2022). Metode Bayesian dan Multilayer Percepton dalam Mengklasifikasi Diabetes Mellitus. Jurnal Sistim Informasi Dan Teknologi, 4, 82–86. https://doi.org/10.37034/jsisfotek.v4i2.132
Sihombing, P. R., & Yuliati, I. F. (2021). Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 417–426. https://doi.org/10.30812/matrik.v20i2.1174
Sugiono, Taufik, A., & Faizal Amir, R. (2020). Penerapan Penerapan Teknik Pso Over Sampling Dan Adaboost J48 Untuk Memprediksi Cacat Software. Jurnal Responsif : Riset Sains Dan Informatika, 2(2), 198–203. https://doi.org/10.51977/jti.v2i2.249
Wintana, D. (2020). Integrasi Metode Diskritisasi Dan Gain Ratio Pada Prediksi Cacat Perangkat Lunak Berbasis Naive Bayes. Tesis. Repository Nusa Mandiri, 1–48.