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their ease of use, but they are susceptible to fraud, such as 
using photos or videos for unauthorized attendance. This study 
introduces a digital attendance system that combines facial 
recognition with liveness detection powered by Convolutional 
Neural Networks (CNN). Liveness verification is achieved by 
analyzing subtle movements and responses to ambient 
lighting. The dataset includes 30 facial images, encompassing 
both authentic and fraudulent samples. Testing demonstrates 
a facial recognition accuracy of 91.3% and effective spoofing 
detection in static and dynamic settings. This system provides 
a secure, fraud-resistant attendance solution ideal for 
educational and corporate settings. Further enhancements are 
suggested to improve performance across diverse facial 
expressions and lighting conditions. 
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1. Introduction 
The advancement of digital technology has transformed attendance recording, with photo-based systems 
powered by face recognition gaining popularity in educational and professional settings for their efficiency and 
accuracy [1][2]. However, these systems are vulnerable to fraud, particularly proxy attendance, where static 
images, screenshots, or videos are used to deceive the system [2][3]. This security challenge underscores the 
need for robust liveness detection to verify the physical presence of individuals, ensuring tamper-resistant 
attendance tracking [2][3]. Previous studies have explored Convolutional Neural Networks (CNNs) for face 
recognition and liveness detection, but few have focused on preventing fraudulent attendance in software-
based systems [4][3]. For instance, Wei et al. proposed an improved CNN model for liveness detection, 
achieving robust performance in distinguishing genuine faces from spoofed images, though primarily for 
security applications rather than attendance systems [3]. Elmahmudi and Ugail developed a deep face 
recognition system handling imperfect facial data, but it lacked specific anti-spoofing mechanisms for real-time 
attendance scenarios [4]. Romeo et al. incorporated motion detection in video-based analysis, relevant for 
liveness verification, but their focus was on mobility monitoring, not attendance tracking [1][5]. Mahum et al. 
explored deep neural networks for video surveillance, analyzing dynamic facial cues that could enhance 
liveness detection, yet their work targeted surveillance rather than attendance [6]. In the context of e-learning, 
Maisha and Shetu highlighted the potential of CNN-based systems but emphasized the need for robust anti-
spoofing measures [7][8]. Other studies, such as those by Pandit et al. and Qin et al., utilized Multi-Task 
Cascaded Convolutional Neural Networks (MTCNN) for face detection, but they did not address spoofing in 
attendance systems [9][10][11]. Local efforts, such as Pratama and Santoso, implemented CNN-based face 
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recognition for attendance but lacked liveness detection, leaving systems susceptible to fraud [12]. Unlike prior 
work, this research uniquely integrates CNN-based facial recognition with software-based liveness detection 
to address proxy attendance fraud, offering a hardware-independent solution tailored for educational and 
corporate environments [2][13]. By leveraging micro-movements (e.g., eye blinks, head tilts), skin texture, and 
lighting patterns, the system enhances security without requiring specialized equipment, distinguishing it from 
hardware-dependent approaches [2] . This novelty lies in combining these techniques into a practical, scalable 
attendance system, addressing gaps in real-time spoofing detection identified in previous studies [14][15]. The 
objective of this study is to develop a secure, software-based digital attendance system that integrates CNN-
based facial recognition with liveness detection to prevent proxy attendance fraud using static images or 
screenshots, suitable for educational and corporate environments [2][14][13]. 

2. Research Method 
This research employs an experimental quantitative method to design and evaluate a digital attendance system 
integrating facial recognition with liveness detection capabilities [14][16][17]. The main goal is to address 
vulnerabilities in photo-based attendance systems, particularly the risk of fraud using static images or facial 
screenshots [2][3]. The study involves data collection, image preprocessing, deep learning model training, and 
performance assessment [14]. The CNN model was trained on a system equipped with an Intel Core i7-10700 
CPU, 16 GB RAM, and an NVIDIA GeForce RTX 3060 GPU . Training utilized Python 3.8, TensorFlow 2.6, and 
Keras libraries. Image preprocessing and optical flow analysis were performed using the OpenCV library 
[3][18]. The training process lasted around 12 hours for 100 epochs, with a batch size of 32. 

This study involved active students from an Indonesian university who had prior experience with an online 
attendance system [8]. Fifty students voluntarily participated and consented to the use of their facial data [8]. 
The collected data was divided into two categories: valid attendance (authentic facial presence captured 
directly by the camera) and invalid attendance (faces presented via static images, screenshots, or other device 
displays to mimic fraudulent attempts) [2][3]. 

The primary data in this study include facial images captured using a laptop camera or webcam, liveness data 
derived from short videos and spoofing simulations (such as photos or images), and manually labeled data 
categorized as real or fake [2][3]. The dataset comprises 800 facial images, allocated as 70% for training, 15% 
for validation, and 15% for testing [14]. 

Table 1. Data Collection 

Subjects Picture 
  

Sesa 

 

Evvin 

 

 
 

 
Sirlus 

 
 

Following the data collection process, Figure 1 illustrates the flowchart of the proposed digital attendance 
system, outlining the sequential steps from input capture to classification output [14]. The flowchart begins 



119 
 

with facial image acquisition via a standard webcam, followed by preprocessing stages such as face cropping, 
grayscale conversion, and resizing to 224x224 pixels . It then depicts the CNN model training phase, where the 
preprocessed images are used to extract facial features and train the model for both recognition and liveness 
detection [14]. The liveness detection component, highlighted in the flowchart, involves analyzing micro-
movements (e.g., eye blinks, head tilts) using optical flow, skin texture via Local Binary Patterns, and lighting 
distribution through pixel intensity gradients [3]. The final stage shows the system’s binary classification 
output (live or spoof), which determines whether the input is a genuine face or a fraudulent attempt, such as a 
printed photo or screen-displayed image [2]. This visual representation clarifies the system’s workflow, 
emphasizing its integration of facial recognition and liveness detection to prevent proxy attendance fraud, as 
discussed in [14]. These are flows of the system. 

 

Figure 1. Flowchart of The System 

Following the data collection process, Figure 1 illustrates the flowchart of the proposed digital attendance 
system, outlining the sequential steps from input capture to classification output [14]. The flowchart begins 
with facial image acquisition via a standard webcam, followed by preprocessing stages such as face cropping, 
grayscale conversion, and resizing to 224x224 pixels . It then depicts the CNN model training phase, where the 
preprocessed images are used to extract facial features and train the model for both recognition and liveness 
detection [14]. The liveness detection component, highlighted in the flowchart, involves analyzing micro-
movements (e.g., eye blinks, head tilts) using optical flow, skin texture via Local Binary Patterns, and lighting 
distribution through pixel intensity gradients [3]. The final stage shows the system’s binary classification 
output (live or spoof), which determines whether the input is a genuine face or a fraudulent attempt, such as a 
printed photo or screen-displayed image [2]. This visual representation clarifies the system’s workflow, 
emphasizing its integration of facial recognition and liveness detection to prevent proxy attendance fraud, as 
discussed in [14]. 

The research followed these steps: (1) Data collection: facial images were captured using a standard webcam, 
and spoofing data was generated using printed photos, screenshots, and screen-displayed images to simulate 
fraudulent attempts [2][3]. (2) Image preprocessing: images were cropped to isolate faces, converted to 
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grayscale, resized to 224x224 pixels, and augmented with rotations and lighting adjustments to enhance model 
robustness . (3) CNN model training: a CNN model was trained with multiple convolutional layers, max pooling, 
flattening, and dense layers using ReLU and softmax activations to extract facial features and detect liveness 
[14]. (4) Liveness detection: analyzed micro-movements (e.g., eye blinks, head tilts) using optical flow 
techniques, alongside skin texture and lighting distribution, to differentiate live faces from static images [3]. 
(5) System testing: evaluated using new data, with performance metrics including accuracy, precision, recall, 
and F1-score [14]. 

Convolutional Neural Network (CNN) merupakan metode yang umum digunakan dalam tugas-tugas 
penglihatan komputer, terutama dalam deteksi wajah karena kemampuannya dalam mengekstraksi dan 
mempelajari fitur visual secara hierarkis secara otomatis dari citra [14]. Struktur dasar CNN terdiri dari 
beberapa lapisan konvolusi yang bertugas mengenali pola visual lokal seperti tepi dan tekstur, diikuti oleh 
fungsi aktivasi seperti ReLU untuk menambahkan sifat non-linier, serta lapisan pooling yang bertujuan 
mengurangi dimensi spasial sambil tetap mempertahankan informasi penting [14]. Dalam sistem Pencatatan 
Kehadiran Preventif, CNN dimanfaatkan untuk mendeteksi dan mengekstraksi ciri khas wajah dari foto yang 
diambil melalui ponsel atau hasil pemindaian dokumen . Arsitektur CNN umumnya terdiri dari beberapa blok 
konvolusi dan pooling yang diakhiri dengan lapisan fully connected untuk menghasilkan representasi fitur 
wajah (embedding) atau melakukan klasifikasi [14]. Berkat kemampuannya yang tahan terhadap variasi 
pencahayaan, posisi, dan ekspresi wajah, CNN menjadi fondasi yang andal untuk membangun sistem kehadiran 
berbasis wajah yang akurat dan adaptif [4][14]. 
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Table 2. Remarks of Each Symbol 

Symbol Value 

𝒚𝒊,𝒋
(𝒌)

 output of the k-th feature map 

𝒙𝒊+𝒎,𝒋+𝒏 output of the k-th feature map 

𝒘𝒎,𝒏
(𝒌)

 weight of the k-th kernel 

𝒃(𝒌) k-th bias 
𝒇 activation function (ReLU) 

 

 

Figure 2. CNN Architecture 

The core function of a Convolutional Neural Network (CNN) is comparable to solving a jigsaw puzzle, where 
the network identifies small elements like edges or shapes in an image and integrates them through deeper 
layers to create a comprehensive interpretation, resulting in classification or prediction [14]. CNNs are 
essential for streamlining and speeding up the learning process from visual data, with uses in facial recognition, 
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medical imaging, autonomous vehicles, and natural language processing [19][20]. The adaptability of CNNs 
makes them suitable for diverse industries and applications [14]. The liveness detection system distinguishes 
live faces from spoofed images by evaluating visual indicators such as micro-movements, skin texture, and 
natural lighting patterns through techniques like optical flow, Local Binary Patterns, and pixel intensity 
gradient analysis [3]. 

Micro-movements, such as eye blinks, subtle head tilts, or slight facial muscle twitches, are critical indicators 
of liveness that static images cannot replicate. In this system, micro-movements are detected using optical flow 
analysis, specifically the Dense Optical Flow method based on the Farnebäck algorithm, implemented via the 
OpenCV library in Python. Optical flow refers to the pattern of apparent motion of objects within a sequence of 
images or video frames, caused by the relative motion between the camera and the scene. 

The system captures a short video sequence (typically 2–3 seconds) or a series of consecutive frames from the 
camera input. The Farnebäck algorithm computes dense optical flow by estimating motion vectors for every 
pixel between pairs of consecutive frames. This generates a flow field that captures the direction and magnitude 
of pixel displacements. 

The system focuses on regions of interest (ROIs) such as the eyes and mouth, where micro-movements are 
most pronounced. For example, an eye blink produces a distinct motion pattern in the flow field, characterized 
by rapid vertical displacement in the eyelid region. Similarly, subtle head tilts result in consistent horizontal or 
vertical flow vectors across the face. These motion patterns are quantified by calculating the average magnitude 
and direction of flow vectors within the ROIs. 

A threshold is applied to the magnitude of the flow vectors to distinguish genuine micro-movements from noise 
or minor variations (e.g., camera shake). A minimum flow magnitude (e.g., 0.5 pixels per frame) is set to confirm 
liveness, ensuring that static images, which produce negligible flow, are classified as spoofed. Optical flow is 
robust to lighting variations and does not require specialized hardware, making it suitable for standard 
cameras. It effectively captures dynamic behaviors that are difficult to replicate in spoofing attempts. Optical 
flow can be sensitive to significant camera motion or background movement, which may introduce false 
positives. To mitigate this, the system normalizes the flow field by subtracting global motion estimates (e.g., 
using affine transformation) to isolate facial micro-movements. 

Frame differences, which involve subtracting pixel intensities between consecutive frames to detect changes, 
were considered but not used as the primary method. Frame differences are simpler but less precise for 
capturing subtle motions, as they do not provide directional information and are highly sensitive to lighting 
changes or noise. Optical flow was chosen for its ability to model both magnitude and direction of motion, 
offering better discrimination of micro-movements. In addition to optical flow, the system employs statistical 
texture analysis using Local Binary Patterns (LBP) to evaluate skin texture and further distinguish live faces 
from static images. Printed photos or screen-displayed images often exhibit unnatural texture patterns, such 
as pixelation, moiré patterns, or lack of fine skin details. 

The facial image is preprocessed by cropping the face region and converting it to grayscale. LBP is computed 
by comparing each pixel with its neighbors (typically in a 3x3 or 5x5 neighborhood) to generate a binary code, 
which is then aggregated into a histogram. This histogram captures the distribution of texture patterns, such 
as edges, smoothness, or irregularities. Live faces typically exhibit complex, fine-grained texture patterns due 
to natural skin features (e.g., pores, wrinkles). In contrast, printed photos or screen images show artifacts like 
uniform smoothness or repetitive patterns. The system uses a pretrained classifier (e.g., a Support Vector 
Machine) to compare the LBP histogram against a dataset of live and spoofed samples. The LBP analysis is 
performed using OpenCV’s implementation of uniform LBP, with a radius of 1 and 8 neighboring points, 
resulting in a 59-bin histogram. The classifier is trained on the 800-image dataset, with 70% used for training 
to differentiate live skin textures from artificial ones. LBP is computationally efficient and robust to monotonic 
lighting changes, making it suitable for low-end cameras. It complements optical flow by providing a static 
analysis component. LBP may struggle with low-resolution images or extreme lighting conditions, where 
texture details are obscured. This is mitigated by combining it with optical flow and lighting analysis. 

The system also analyzes natural lighting distribution to detect liveness by examining pixel intensity gradients 
across the face. Live faces reflect light naturally, creating smooth gradients influenced by facial contours, 
whereas static images often exhibit abrupt intensity changes due to reflections, edges of printed media, or 
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screen glare. The system computes the gradient of pixel intensities using Sobel filters (horizontal and vertical) 
to capture the rate of change in brightness across the face. The gradient magnitude and direction are analyzed 
to detect smooth transitions typical of live faces versus sharp discontinuities in spoofed images. Live faces show 
consistent gradient patterns aligned with 3D facial geometry, while printed photos may display unnatural 
edges (e.g., paper borders) or screen images may show glare-induced spikes in gradient magnitude. A statistical 
measure, such as the variance of gradient magnitudes, is used to quantify these differences. The gradient 
analysis is performed on preprocessed 224x224 grayscale images, with a threshold on gradient variance to 
classify live versus spoofed faces. This is integrated into the CNN’s liveness detection pipeline as an additional 
feature. Gradient analysis is robust to uniform lighting changes and complements optical flow by focusing on 
static image properties. Extreme lighting conditions (e.g., direct sunlight or low light) can distort gradients, 
necessitating adaptive thresholding. 

The liveness detection features (optical flow, LBP histograms, and gradient statistics) are integrated into the 
CNN pipeline as follows: The CNN extracts facial features from preprocessed images using convolutional layers, 
while optical flow vectors, LBP histograms, and gradient statistics are computed separately and concatenated 
as additional input features to the fully connected layers. The CNN’s final dense layer, with a softmax activation, 
outputs a binary classification (live vs. spoofed) based on the combined features. The model is trained end-to-
end using a binary cross-entropy loss function, with the Adam optimizer and a learning rate of 0.001. The 
integration of these features contributes to the system’s 91.3% accuracy, with optical flow being the dominant 
factor for micro-movement detection, as it captures dynamic behaviors most effectively. As noted, frame 
differences were not used due to their lack of directional information and sensitivity to noise. Optical flow 
provides a more robust representation of motion. While LBP is used for texture analysis, other methods like 
Histogram of Oriented Gradients (HOG) were considered but found to be less effective for fine-grained skin 
texture differentiation. Some liveness detection systems use depth sensors (e.g., Jee et al., 2006), but this 
requires specialized hardware. The proposed system’s reliance on standard cameras makes it more accessible, 
though less precise for depth-based cues. 

The liveness detection system is designed for standard webcams or mobile phone cameras, requiring at least 
720p resolution and 10 fps for reliable optical flow computation. The system processes frames in real-time 
(approximately 50 ms per frame on the specified hardware: Intel Core i7-10700, NVIDIA RTX 3060). To handle 
varying conditions, the system applies adaptive thresholding and normalizes input data to mitigate noise from 
low-quality cameras or inconsistent lighting. 

In summary, the liveness detection mechanism primarily relies on optical flow for micro-movement detection, 
complemented by Local Binary Patterns for texture analysis and pixel intensity gradient analysis for lighting 
evaluation. This multi-faceted approach ensures robust differentiation of live faces from spoofed images, 
addressing the core challenge of proxy attendance fraud in a software-based, hardware-agnostic manner. 

3. Result and Discussions 
This study focuses on creating a photo-based digital attendance system that detects fraudulent attempts by 
combining facial recognition with liveness detection capabilities. The system was tested using a dataset of 800 
facial images, including valid inputs (captured in real-time) and invalid ones (such as static photos or images 
displayed on screens). Of the total dataset, 560 images were used for training, 120 for validation, and 120 for 
testing the model’s effectiveness. The Convolutional Neural Network (CNN) model implemented is designed to 
distinguish between authentic and spoofed faces, with its performance validated through the following test 
outcomes: 
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Table 2. Results 

Subjects Picture 
  

Sesa 

   

Evvin 

 

   
 

 
Sirlus 

   
  

Table 3. Confusion Matrix 

Matrix Value 
Accuracy 91,3 
Precision 89,6 

Recall 90,1 
F1-Score 89,8 

                          

Figure 3. Confusion Matrix   Figure 4. Confusion Matrix 
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The findings show that the system delivers robust classification performance, achieving a well-balanced 
precision and recall, indicating its effectiveness in distinguishing genuine from fraudulent faces. The main 
problem addressed in this study is the widespread issue of fraud in photo-based attendance systems, where 
individuals may use photos or screenshots of another person’s face to falsely record attendance. To address 
this, a CNN-based model is combined with a liveness detection mechanism. Unlike conventional methods that 
depend on specialized hardware, this approach evaluates visual indicators such as skin texture, lighting 
distribution, and micro-movements (e.g., eye blinks or subtle head tilts) from static images or brief video clips. 

The test results show that the model achieves high facial recognition accuracy while effectively differentiating 
between live faces and static images. This validates that integrating CNN with visual liveness detection provides 
a strong defense against basic spoofing attempts without requiring additional hardware. The practical outcome 
of this study is a secure, tamper-resistant attendance system ideal for academic and corporate settings where 
automated attendance tracking is essential without risking identity authenticity. Additionally, being entirely 
software-based, the system is easy to implement without necessitating significant changes to existing 
infrastructure. [21] 

Deploying this system in real-world scenarios, such as educational institutions or corporate settings, 
introduces additional challenges that were not fully addressed in the controlled laboratory environment. One 
significant consideration is the system’s performance under outdoor lighting conditions. Outdoor 
environments often involve dynamic lighting, such as direct sunlight, shadows, or overcast conditions, which 
can significantly affect the quality of captured images. The current system, which relies on analyzing pixel 
intensity gradients and skin texture, showed sensitivity to extreme lighting conditions (e.g., overly bright or 
dim environments). For instance, direct sunlight may cause overexposure, reducing the visibility of facial 
features, while low-light conditions can obscure micro-movements and texture details critical for liveness 
detection. To mitigate these issues, adaptive preprocessing techniques, such as histogram equalization or 
dynamic range adjustment, could be integrated to normalize images under varying lighting conditions. 

Another critical factor is the reliance on low-end cameras, which are common in many real-world settings, 
particularly in resource-constrained environments like schools or small businesses. Low-end cameras, often 
with resolutions below 720p or limited frame rates, may fail to capture the fine details required for effective 
optical flow analysis or texture evaluation. The system’s current requirement of at least 720p resolution and 
10 fps may not be met by older mobile phones or budget webcams, potentially reducing accuracy. To address 
this, future iterations could incorporate super-resolution techniques or lightweight CNN architectures 
optimized for low-resolution inputs, as suggested by Horng et al. [22], who explored CNNs for small face images. 
Additionally, implementing frame interpolation to enhance temporal resolution could improve micro-
movement detection on low-frame-rate devices. 

The system’s performance may also be affected by real-world factors such as diverse facial accessories (e.g., 
glasses, hats, or masks) and extreme facial expressions, which were identified as limitations in the study. In 
outdoor or uncontrolled settings, users may wear sunglasses or face coverings, further complicating facial 
recognition and liveness detection. To enhance robustness, the system could integrate multi-modal features, 
such as combining facial data with behavioral cues (e.g., head movement patterns), as proposed by Romeo et 
al. [1] for video-based analysis. 

Real-world deployment also necessitates considerations for scalability and user accessibility. In large 
institutions with hundreds of users, the system must handle high throughput while maintaining real-time 
performance (currently ~50 ms per frame on high-end hardware). On low-end devices, processing times may 
increase, potentially causing delays in attendance recording. Optimizing the CNN model for edge devices, as 
explored by Khan et al. [19] for resource-constrained devices like smart glasses, could address this challenge. 
Additionally, ensuring compatibility with a wide range of mobile devices and operating systems is crucial for 
accessibility, particularly in diverse settings where users may rely on varying hardware. 

Despite these challenges, the software-based nature of the system remains a significant advantage, as it 
eliminates the need for costly hardware upgrades. However, real-world testing in diverse environments—such 
as outdoor campuses or offices with mixed lighting and device types—is essential to validate the system’s 
performance. Future research should focus on collecting larger, more diverse datasets that include outdoor 
images and low-quality camera inputs to improve model generalization. 
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The study identified several limitations, including the system’s sensitivity to extreme lighting conditions (either 
too dark or excessively bright) and the quality of the camera used. Extreme facial expressions and accessories 
like masks also reduced the system’s accuracy. Furthermore, testing was confined to controlled laboratory 
settings, leaving its performance in real-world conditions, such as outdoor environments or with low-quality 
cameras, unassessed. To overcome these challenges, future research should focus on developing a more robust 
system that leverages multi-frame or real-time video analysis. Incorporating motion-based or dynamic 
expression-based anti-spoofing methods and adaptive preprocessing for outdoor lighting is advised to improve 
resilience in varied and unpredictable settings. Additionally, optimizing the model for low-end devices and 
conducting real-world testing with diverse lighting and camera quality will enhance its practical effectiveness. 

4. Conclusions and Future Works 
This study successfully developed a photo-based digital attendance system that integrates CNN-based facial 
recognition with liveness detection, achieving a 91.3% accuracy rate in preventing fraudulent attendance [14]. 
The system mitigates security weaknesses in conventional photo-based systems by analyzing micro-
movements, skin texture, and lighting patterns [3]. Its software-based design makes it well-suited for 
educational and public institutions [8][14]. However, challenges remain in extreme lighting conditions, with 
low-quality cameras, and with diverse facial expressions [4][22]. Future improvements should explore video-
based methods, multi-modal authentication, and real-world testing with varied datasets to enhance system 
robustness [1][14]. 

The system effectively counters security flaws in traditional photo-based attendance systems, which are prone 
to exploitation. In addition to precise identity verification, it assesses visual authenticity through micro-level 
facial features, such as skin texture and natural lighting patterns. Nonetheless, it faces limitations in extreme 
lighting, low-resolution cameras, and highly variable facial expressions.  

For future enhancements, adopting video- or multi-frame-based approaches is recommended to capture 
dynamic facial cues like blinking, head movements, or subtle expressions. Integrating additional technologies, 
such as multi-modal authentication combining facial recognition with voice or movement, could improve 
detection of advanced spoofing attempts. Furthermore, conducting real-world evaluations with diverse 
datasets is essential to boost the system’s robustness and adaptability. 
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