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Natural disasters are events caused by nature such as 
earthquakes, tornadoes, tsunamis, forest fires, and others. The 
impacts of natural disasters are significant and varied across 
various sectors, including the economy, health, and primarily, 
infrastructure. Effective and efficient actions are needed to 
assist in the recovery following natural disasters, one of which 
is aiding in the identification of building damage levels post-
disaster. To address this issue, this research proposes a system 
capable of performing segmentation to determine the level of 
building damage post-natural disaster using convolutional 
neural network methods. The data utilized consists of aerial 
images sourced from xView2: Assess Building Damage, 
comprising 50 aerial images with 5 classes: no-damage, minor-
damage, major-damage, destroyed, and unlabeled. The steps 
undertaken in this research include data preprocessing using 
patchify and data augmentation. Subsequently, feature 
extraction is performed using convolution, followed by the 
training process using a neural network with the proposed 
architecture. This study proposes an architecture with 27 
hidden layers, with feature extraction utilizing average 
pooling. The model evaluation process will employ Mean 
Intersection over Union (MIoU) to assess how closely the 
segmentation prediction results resemble the original data. 
The proposed architecture demonstrates the best MIoU result 
with a value of 0.31 and an accuracy of 0.9577. 
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1. Introduction 
Natural disasters are events of a geological nature, including, but not limited to, earthquakes, tsunamis, floods, 

forest fires, storms, droughts and heat waves. These events are part of the riskscape with which humans have 

learnt to coexist. However, the impact of natural disasters has increased significantly in recent years [1].The 

impact of natural disasters is substantial and diverse, impacting various sectors, including the economic, health, 

building, and vegetation sectors [2]. Given the wide range of sectors susceptible to the impact of natural 

disasters, effective and efficient management strategies are paramount. 

In this particular instance, one of the sectors that merits particular attention is the physical sector, with a 

particular focus on the management of damaged buildings in the aftermath of natural disasters. In the event of 

a building being damaged by a natural disaster, it is imperative to assess the extent of the damage caused by 

the natural disaster itself. The purpose of this procedure is to ascertain the extent of necessary repairs. The 
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extent of damage is contingent on the nature of the natural disaster and the geographical location of the 

building. In some cases, minor damage will only require minor repairs and minimal cost, but damage can also 

be severe and require significant expense to repair and even reconstruct [3]. 

The quantification of the damage to buildings in the aftermath of a natural disaster is frequently conducted 

manually, a method that is inherently not efficacious for the purpose of accurate assessment. There are several 

factors that cause manual determination to be ineffective. Firstly, it requires a significant amount of energy and 

time. It is imperative to acknowledge the necessity for a considerable number of individuals to be involved in 

this process, given the fact that the damage that occurs is not confined to a single building. This, in turn, results 

in an increase in the time required for the determination process to be completed. Consequently, this may 

impede the response of the rescue team [4]. The second factor pertains to the reliance on experts in 

determining the level of damage to buildings in the aftermath of natural disasters. The determination of the 

level of damage to be consistent is a task best suited to an expert, but the limitations of the expert can act as an 

obstacle in this process [5]. 

In order to surmount this limitation, there is a necessity for the development of deep learning models to 

automatically determine the level of damage to buildings after natural disasters [4]. The author employs a deep 

learning model with a convolutional neural network (CNN) method, utilising an architecture that has been 

designed by the author in a computational approach. The power of CNN lies in its ability to automatically learn 

and extract complex visual features, a capability proven effective across various domains. For example, 

research journal by Indriani et al. [6] demonstrated that a CNN model could achieve high accuracy in identifying 

unique and nuanced patterns in handwritten signatures, confirming the method's robustness for complex 

identification tasks. The utilisation of data, manifesting as images of edifices damaged by natural disasters, 

empowers the deep learning model with the capability to accurately and expeditiously ascertain the extent of 

damage post-natural disaster. It is hoped that the impacts that occur due to manual methods in determining 

the level of damage to buildings after natural disasters will not occur. 

A study was conducted by Almas et al. [7]  to ascertain the efficacy of the artificial neural network method in 

determining the level of damage to buildings in the aftermath of natural disasters. In this study, researchers 

employed text data exclusively, eschewing the use of image data. The experimental findings demonstrate that 

the E5 data pattern model exhibits an optimal accuracy rate of 97 per cent, accompanied by a Mean Squared 

Error (MSE) value of 0.06 and a Mean Absolute Percentage Error (MAPE) of 3 per cent. The author's hypothesis, 

formulated on the basis of previous research, is that this problem can be optimised with image data using the 

convolutional neural network method. 

Subsequently, research on damage segmentation using the convolutional neural network method with Unet 

architecture has been carried out in the context of disease in rice plants affected by leafblast pests by Annafii 

et al. [8]. In this study, a model was developed to segment the data, with a total of 300 cases analysed. The 

model demonstrated an accuracy of 98.60%, with a loss of only 0.0526. This finding indicates that the 

employment of the U-Net model in the segmentation process, particularly in the context of damage 

segmentation, yields optimal outcomes. 

Research by Kotaridis and Lazaridou. [9] also demonstrated the efficacy of U-Net in the segmentation of 

geographic elements, such as buildings and vegetation, in map images, achieving an accuracy of 0.97. Di 

Benedetto et al. [10] developed U-Net with ResNet50 encoder for road crack segmentation, resulting in mIoU 

of 0.6248 and F1-score of 0.7577. Gangurde. [11] also successfully enhanced the performance of building and 

road segmentation from UAV images with U-Net and EfficientNet encoder. 

W. Li et al. [12] conducted a comparative analysis of U-Net and U-Net-CBAM in the segmentation of waterlogged 

areas from Sentinel-1A images. Their findings indicated that U-Net-CBAM exhibited a notable capacity to 

enhance the segmentation outcomes, particularly in scenarios involving smaller areas . As posited by Y. Li et al. 

[13], the CTMU-UNet model has been demonstrated to produce optimal results when applied to various 

datasets pertaining to the segmentation of aerial imagery. 
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Whilst the aforementioned studies establish the U-Net architecture as a powerful tool for segmentation, this 

research provides a critical analysis of its application in the unique context of post-disaster building damage 

by positioning itself against key related works. In contrast to the work of Annafii et al. [8], which focused on 

segmenting relatively uniform objects like pests on rice leaves, this study tackles the far more complex domain 

of building damage imagery, characterised by high variability in shape, texture, and lighting. Furthermore, this 

study utilises a standard U-Net architecture that has been built from the ground up, a departure from the 

approach employed by Di Benedetto et al. [10]. The latter effectively applied a U-Net with a pre-trained 

ResNet50 encoder (transfer learning) for the detection of linear road cracks. This methodological distinction—

building from scratch versus using transfer learning—likely contributes to the lower mIoU score obtained in 

this study (0.31 vs. 0.62) and underscores the significant advantage of leveraging pre-trained models. Gangurde 

lends further support to this perspective. [11], whose work represents an evolutionary advancement by 

achieving state-of-the-art results with a U-Net and a powerful EfficientNet encoder. Whilst the present study 

corroborates the hypothesis that U-Net is feasible on fundamental level, Gangurde's findings demonstrate that 

performance can be significantly enhanced through the utilisation of contemporary encoders. Consequently, 

this research serves as a crucial baseline that highlights the definitive superiority of the transfer learning 

approach for building segmentation from aerial imagery. 

The selection of the Convolutional Neural Network (CNN) method in this study is predicated on the basis of the 

problem and previous research results, with the CNN method having previously demonstrated success in 

various image segmentation tasks. The study by Almais et al. [7] demonstrated the efficacy of artificial neural 

networks in assessing the damage to buildings following a disaster using text data. However, the approach does 

not incorporate visual information from images. This development presents a valuable opportunity to enhance 

the analysis process through the utilisation of image data by employing a CNN approach, a methodology that 

has been demonstrated to be highly effective in the domain of visual data processing. Research by Annafii et al. 

[8] demonstrated that a CNN with a U-Net architecture is capable of segmenting crop damage with a high 

degree of accuracy. In addition, a plethora of other studies lend further support to the efficacy of U-Net and its 

derivatives in segmentation tasks, including, but not limited to, geographic images as demonstrated by 

Kotaridis and Lazaridou. [9], road cracks as outlined by Di Benedetto et al. [10], and building and road 

segmentation from UAV images as investigated by Gangurde. [11]. Research by W. Li et al. [12] also proved the 

improved performance of waterlogged area segmentation by adding a CBAM module to the U-Net architecture, 

while Y. Li et al. [13] proposed a CTMU-UNet that produces superior performance on various aerial image 

datasets. Drawing upon the findings of these studies, this research employs a convolutional neural network 

(CNN) with a U-Net architecture to segment building damage areas from images. The objective is to evaluate 

the efficacy of this approach in automatically and efficiently mapping damage following natural disasters. 

2. Research Method 
The research method will address the stages of research. The research process is delineated by the following 

stages: data collection, data preprocessing, architecture model building, model training, and model evaluation. 

The data that the author utilised for this research is satellite image data of an area that has experienced a 

natural disaster. The dataset under scrutiny was procured by the author through a public dataset provider 

website, xView2: Assess Building Damage. In this research, the author will divide the data into a 70:30 

composition. This configuration is indicative of a 70% allocation of data designated for training purposes, with 

the remaining 30% allocated for testing. The quantity of data to be utilised in the training process is set to be 

50 high-resolution images, with a resolution of 1024 x 1024 pixels. To ensure a degree of diversity in the source 

data, these 50 images were selected to represent a variety of disaster scenarios, including tornadoes, tsunamis, 

wildfires, floods, and windstorms. 

The data set under consideration comprises four distinct classes: no damage (green), minor damage (yellow), 

major damage (orange), and destroyed (red). The class in question can be observed in the ground truth image 

that has been obtained. However, for the purposes of this research, the author will introduce an additional 
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class, namely the unlabelled class (grey). The total number of classes utilised in this study amounts to five. An 

exemplar of the data utilised is presented in Figure 1. 

 

Figure 1. Example of Dataset 

Figure 1 illustrates an example of the data used in this study. On the left is the original aerial image, showing a 

top-down view of a residential area that has sustained damage. On the right is the corresponding ground truth 

mask. This mask provides pixel-level annotations for each building, where different colors represent the 

specific damage class: green for "no-damage," yellow for "minor-damage," orange for "major-damage," red for 

"destroyed," and grey for "unlabeled" structures. This pair of image and mask serves as a single data sample 

for training and evaluating the segmentation model. 

Data preprocessing involves transforming raw data into a clean, organised format that is suitable for analysis, 

particularly in the context of data mining, machine learning and other data science tasks. This step is essential 

because real-world data is often incomplete or inconsistent and may contain errors, which can negatively 

impact the performance and accuracy of analytical models [14]. 

The subsequent procedure is the data preprocessing stage, which is conducted prior to commencing the 

training process. At this stage, the image will be subjected to patchification, after which the results of this 

process will be normalised. The process of image segmentation, whereby an image is divided into smaller 

components, is known as 'patchify' [15]. The rationale behind this process is that the original image resolution 

size of 1024 x 1024 is too substantial for direct utilisation in the convolution and training processes. 

Consequently, the author will divide it into 256 x 256 sizes, each. 

Subsequent to the implementation of the patchification process, the augmentation process is then initiated with 

the objective of further enriching the data and reducing the occurrence of overfitting during the training 

process [16]. In this particular instance, the augmentation process entails the rotation of each image that has 

undergone patchification by 90°, 180°, or 270°. 

Subsequent to the augmentation process, a normalisation procedure will be executed. The process will be such 

that the value of each pixel is divided by 255, resulting in a value that falls within the range of 0 to 1. This is 

done with the intention of reducing the computational burden during the training process [17]. 

Model architecture refers to the structured design and organisation of a machine learning model. It specifies 

how its components, such as layers, neurons and connections, are arranged and interact to process data and 

produce predictions. In deep learning, for instance, the model's architecture determines the sequence and types 
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of layers (e.g. convolutional, pooling, or fully connected) and how data flows through them. This ultimately 

influences the model's ability to learn and represent complex patterns [18]. 

The architecture model utilised in this study employs an architecture comprising four pairs of encoder-decoder 

blocks and a single bottleneck block. As illustrated in Figure 2, the architectural model is represented by the 

image. 

 

Figure 2. Proposed Model 

As demonstrated in Figure 2, the proposed model follows a U-Net-like structure, consisting of a contracting 

path (encoder) on the left and an expansive path (decoder) on the right. The encoder accepts the input pixels 

and passes them through a series of convolutional and pooling layers (AvgPooling) in order to capture 

contextual features while progressively reducing spatial dimensions. The decoder path then takes these 

features and uses transpose convolutions to upsample them, gradually restoring the spatial resolution. A 

fundamental component of this architecture is the skip connections, which concatenate feature maps from the 

encoder path directly to the corresponding layers in the decoder path. This process enables the model to 

recuperate fine-grained spatial information that is forfeited during the encoding phase, a factor that is pivotal 

for the generation of precise segmentation maps. The final layer performs a pixel-wise classification to generate 

the segmented output image. 

Within each block, the encoder will execute a convolution process with ReLU activation, followed by batch 

normalisation and culminating in pooling. Moreover, the decoder component will execute transpose 

convolution, followed by skip connection, utilising the feature map from the encoder. Following the execution 

of the transpose convolution operation, the subsequent convolution process will be conducted in the 

conventional manner, accompanied by the implementation of batch normalisation. As indicated in the section 

concluding the decoder, a pixel-based process will be conducted to categorise each pixel according to the 

predetermined class. This process also endeavours to calculate the loss function. 

In order to mitigate the issue of overfitting, this study relied on two primary techniques. The initial approach 

is data augmentation, as outlined in the preprocessing section, which involves the artificial enhancement of the 

diversity of the training data. The second is the implementation of Batch Normalization layers following each 

convolution process within the encoder and decoder blocks. Batch Normalization has been demonstrated to 

assist in the regularisation of models and the stabilisation of the training process . However, it should be noted 

that other common regularization techniques, such as Dropout layers, were not implemented in the proposed 

architecture. The decision to exclude them was made to first establish a baseline performance of the U-Net 

structure with minimal architectural additions. 

Training a convolutional neural network (CNN) involves teaching the network to recognise patterns in data, 
typically images, by iteratively adjusting its internal parameters (weights and biases) to minimise the 
difference between its predictions and the actual labels. The process includes a forward pass, in which data is 
processed through the network layers to produce an output; the calculation of a loss function, which measures 
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prediction error; backpropagation, which computes the gradients of the loss with respect to the parameters; 
and optimisation steps (e.g. gradient descent), which update the parameters and improve accuracy over many 
iterations or epochs [19], [20].  

Within the context of the training process, it is imperative to initialise the parameters that will subsequently 
be utilised. These parameters are commonly referred to as hyperparameters. The hyperparameters that have 
been identified as relevant in this context include learning rate, epoch, batch size, and error tolerance. 
Following the initialisation process, the value of the hyperparameters is fixed and remains constant throughout 
the training process [21]. The following hyperparameters, which will be utilised in the present study, can be 
observed in Table 1. 

Table 1. Hyperparameter 

No Hyperparameter Nilai 
1. Learning rate 0.001 
2. Epoch 50 epoch 
3. Batch size 2 Batch size 

 

Table 1 specifies the key hyperparameters used for the training phase of the model. A learning rate of 0.001 

was chosen to control the step size of parameter updates during optimization. The model was trained for a total 

of 50 epochs, meaning it iterated through the entire training dataset 50 times. A batch size of 2 was used, 

indicating that the model processed two images at a time before updating its weights. These specific values 

were selected to balance training time and model performance. 

In this study, model evaluation will be conducted using the mean intersection over the union score (MIoU), a 

metric that is frequently abbreviated. The resulting value will range from 0 to 1, with 1 representing a more 

accurate prediction[22]. The calculation formula is expressed in equation 1 : 

𝑀𝐼𝑜𝑈 = ∑
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

𝑛

1

∗
1

𝑛
(1) 

Description: 

TP = true positive value 

FP = false positive value 

FN = false negative value 

3. Result and Discussions 
The ensuing discourse will be divided into the following sections: data preparation, data preprocessing, 

training model, predicted image and evaluation model. Following the collection of data from the Xview2 

Dataset, two distinct types of data were employed during the model training process: namely, the original aerial 

images showing post-disaster scenarios and their corresponding ground truth masks. The Xview2 dataset has 

been specifically designed for building damage assessment challenges, making it a highly suitable source for 

this research. The training data set under consideration is comprised of 50 high-resolution images, with a 

spatial resolution of 1024 x 1024 pixels. The high resolution of the system is of critical importance in the 

capture of the fine-grained details necessary to distinguish between different levels of structural damage. Each 

aerial photograph is paired with a meticulously annotated ground truth image, which provides the pixel-level 

labels that are essential for training a supervised semantic segmentation model. 

The collected data will undergo a series of preliminary processing stages prior to its utilisation in the model 

training process. As delineated in subchapter 3.2, the preliminary processing stages encompass the processes 

of patching, augmentation, and normalisation. The total number of high-resolution images utilised is 50, with 

a resolution of 1024 x 1024. Subsequent to this preprocessing stage, the aggregate number of images will 
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amount to 3,200. As mentioned in the data collection stage (Section 2.1), this expanded dataset was then split 

using a 70:30 ratio, resulting in 2,240 patches for the training set and 960 patches for the testing set. The 

following example illustrates the outcomes of the data preprocessing procedure, as depicted in Figure 3. 

 

Figure 3. Preprocessing Data 

Figure 3 presents a visual summary of the data preprocessing workflow. The 'Original Image' on the left is a 

high-resolution 1024x1024 satellite image. The image is then subjected to a process known as 'patching', 

whereby it is divided into multiple smaller 256x256 images, as illustrated in the 'Patched Image' grid. Finally, 

in order to increase data diversity and mitigate overfitting, each of these patched images is augmented through 

rotation at 90°, 180°, and 270°, thereby creating additional training samples. 

Subsequent to the completion of the data preparation stage, the data will then progress to the model training 

stage. Hyperparameters for the training process are delineated in section 3.4. 

The convolutional neural network model utilises four encoder and decoder blocks, thus comprising a total of 

27 hidden layers within this architecture. The model utilises the mean value of the pool during the aggregation 

process. The model's accuracy was determined to be 0.9577, as indicated in Figure 4, following the training 

process that incorporated 2240 train data and 960 testing data. 

 

Figure 4. Model Accuracy 

As demonstrated in Figure 4, the training and testing accuracy curves are presented. The training accuracy 

(blue line) displays a consistent upward trend, attaining a high value of approximately 0.95, while the testing 

accuracy (orange line) exhibits variability and stabilises at a lower value of approximately 0.91-0.92. The 
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presence of a clear gap between these two curves serves as a reliable indicator of overfitting. Subsequently, the 

loss value obtained was 0.1133, as illustrated in Figure 5 

 

Figure 5. Model Loss 

As illustrated in Figure 5, the training and validation loss curves are presented. The training loss (blue line) 

displays a consistent decrease, while the validation loss (orange line) exhibits a more erratic pattern, increasing 

after an initial decline. This further corroborates the hypothesis that the model is memorising the training data 

rather than demonstrating effective generalisation. 

Following the conclusion of the training process for the model, the subsequent model that has undergone 

training weights will be utilised in the prediction process. This will result in the display of the segmentation 

result image. The data utilised in this process constitutes 30% of the total data. This 30% figure has been 

determined during the data preparation process, which allocates 70:30 for the training and testing data, 

respectively. The model has predicted a total of 960 data points. The ensuing illustration exemplifies the 

outcomes yielded by the predict model, as depicted in Figure 6.  

 

Figure 6. Predicted Image 

As illustrated in Figure 6, the model produced three distinct segmentation results on three test images. Each 

row in the presentation illustrates the original input image, the corresponding ground truth mask, and the 

model's predicted mask. While the model accurately identifies the general location and class of some buildings 
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(e.g., the green "no-damage" buildings in the top row), it demonstrates significant confusion in more complex 

scenes. For instance, in the second and third rows, the model incorrectly classifies many "major-damage" 

(orange) and "destroyed" (red) buildings, often mixing the two classes or misclassifying them as other damage 

levels. This highlights the challenges discussed in the evaluation section. 

Following the successful prediction by the model, the results of the prediction will be utilised for the purpose 

of model evaluation. This will be achieved by calculating the mean intersection over union (mIoU) and 

displaying the confusion matrix. The mIoU result from predicting all testing data is 0.3018. It is evident that the 

scale of this phenomenon is relatively diminutive. This phenomenon can be attributed to the paucity of 

datasets, thereby constraining the knowledge acquired by the model during the training process. As 

demonstrated in Table 2, both the training results and the mIoU results are available for perusal. 

Table 2. Result of training and evaluation 

Model Accuracy Loss mIoU 
Proposed model 0.9577 0.1133 0.3118 

 

As illustrated in Table 2, the ultimate performance metrics of the proposed model are outlined following the 

completion of 50 epochs of training. The model demonstrated a high final training accuracy of 0.9577, 

accompanied by a low loss of 0.1133. However, the more critical mIoU score, which measures segmentation 

quality on the test set, was only 0.3118, indicating a significant discrepancy between training performance and 

real-world applicability. The subsequent step involves the examination of the confusion matrix, as illustrated 

in Figure 7. 

 

Figure 7. Confussion Matrix 

Figure 7 provides a detailed quantitative breakdown of the model's classification performance for each class. 

The diagonal values (illustrated in dark blue) represent the number of pixels that have been correctly classified. 

While the model performs well for the "no-damage" (249,370 correct) and "destroyed" (162,695 correct) 

classes, the off-diagonal values reveal significant confusion. For instance, a significant proportion of pixels 

classified as "minor-damage" (64,283) were erroneously categorised as "no-damage", while a substantial 

number of pixels designated as "major-damage" (38,605) were inaccurately classified as "destroyed". This 

matrix provides quantitative confirmation of the model's inability to differentiate between visually similar 

levels of damage. 

This observation has also been made in the prediction results. It is evident that there is a similarity in the 

classification systems, with the presence of categories such as 'no damage', 'minor damage', and 'major damage' 
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alongside the concept of 'destroyed'. This phenomenon can be attributed to the limited richness of the data 

employed during the training process. 

An in-depth analysis of the confusion matrix in Figure 7 and the prediction results in Figure 6 reveals that the 

model's primary challenge lies in the high inter-class similarity and potential label ambiguity within the 

dataset. The frequent confusion between "minor-damage" and "no-damage," and similarly between "major-

damage" and "destroyed," can be attributed to several factors. 

Firstly, from an aerial perspective, the visual similarity between classes is significant. Minor damage, such as 

small holes or cracked roofing tiles, can be visually almost indistinguishable from the normal texture of an 

intact roof, especially when affected by shadows or image resolution limitations. This is quantitatively 

supported by the confusion matrix, which shows 64,283 instances of "minor-damage" pixels being misclassified 

as "no-damage." Similarly, the visual line between a building with a collapsed roof ("major-damage") and a pile 

of rubble ("destroyed") is often blurred. The model struggles to differentiate these states, as evidenced by the 

38,605 "major-damage" pixels that were incorrectly predicted as "destroyed." 

Secondly, there is an inherent label ambiguity in defining the boundaries of damage levels. The threshold 

separating "minor" from "major" damage, or "major" damage from "destroyed," is often subjective and can vary 

even among human annotators. This ambiguity in the ground-truth labels makes it exceedingly difficult for the 

model to learn a consistent and precise decision boundary, as the features it learns for one class heavily overlap 

with another. This issue is apparent in the middle and bottom rows of Figure 6, where the model's predictions 

show a mixture of classes where the ground truth is more distinctly defined. This indicates that the model is 

struggling not just with feature extraction, but with the fundamental definition of the classes themselves within 

the provided dataset. 

4. Conclusions and Future Works 
The present study investigated the application of a custom-built Convolutional Neural Network (CNN) with a 

U-Net architecture for the semantic segmentation of post-disaster building damage. The findings indicate that 

while the proposed model achieved a high training accuracy of 0.9577, this metric was misleading. The 

performance metric of choice for this task, Mean Intersection over Union (mIoU), was found to be a mere 

0.3118, thus indicating that the model was not effective in accurately segmenting the various damage classes. 

The principal cause of this unsatisfactory performance was identified as severe overfitting, a phenomenon that 

can be ascribed to a number of intertwined factors that have been identified in this research. Firstly, the 

proposed 27-layer architecture, built from scratch, proved to be overly complex for the limited diversity of the 

training data, which was derived from only 50 unique source images. Secondly, the model demonstrated a 

notable challenge in differentiating between "minor-damage" and "no-damage" and "major-damage" and 

"destroyed," particularly in the context of high inter-class visual similarity and inherent label ambiguity present 

within the dataset. The absence of explicit regularisation techniques, such as Dropout, served to compound the 

overfitting issue. 

Notwithstanding the suboptimal mIoU score, this research makes a significant contribution by establishing a 

critical performance baseline. This finding highlights the substantial limitations of a CNN approach that is 

entirely developed from the beginning for this intricate, real-world segmentation task. The investigation 

further substantiates the necessity of employing more sophisticated techniques. 

To address the identified shortcomings, future work should focus on several key improvements. First, adopting 

a transfer learning approach is recommended, moving away from the from-scratch methodology. By leveraging 

pre-trained encoders, such as ResNet50 or, more effectively, EfficientNet—both of which have shown 

successful results in similar studies—models can utilize robust, pre-learned features, which are essential for 

handling complex visual tasks. Additionally, implementing stronger regularization techniques is crucial. 

Specifically, incorporating Dropout layers into the model's architecture will help combat overfitting more 

effectively. Finally, efforts should be made to enhance data diversity. Although challenging, increasing the 
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variety of unique source images in the training set is essential for improving the model's generalization 

capabilities across different geographical locations, disaster types, and building architectures. By pursuing 

these strategies, future research can build upon the baseline established here to develop a genuinely effective 

and reliable automated system for post-disaster building damage assessment. 
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