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The classification of edible versus poisonous mushrooms 
presents a critical challenge in the domains of applied biology 
and public health, particularly due to the serious implications 
of misidentification. This research employs the UCI Mushroom 
Dataset to evaluate and compare the effectiveness of several 
machine learning models, including traditional algorithms like 
Logistic Regression, Decision Tree, Random Forest, Support 
Vector Machine, K-Nearest Neighbors and Naïve Bayes, as well 
as advanced ensemble techniques such as Stacking and Voting 
Classifier. Notably, both Random Forest and Stacking achieved 
flawless accuracy, reaching 100%, underscoring the high 
predictive capacity of these models in complex categorical 
scenarios. Conversely, Naïve Bayes exhibited significantly 
weaker performance—achieving only 59.8% accuracy—likely 
due to its underlying assumption of feature independence, 
which does not hold for this dataset. The ensemble learning 
approaches, including the combination of Stacking and 
Bagging, not only preserved but also enhanced model 
robustness and generalization. These methods effectively 
leverage the complementary strengths of individual learners to 
yield more accurate and stable predictions while mitigating 
overfitting risks. Comparative analysis with previous research 
confirms the consistency of these findings and reinforces the 
viability of ensemble strategies for handling intricate 
classification tasks. Overall, this study highlights the 
importance of algorithm selection tailored to data 
characteristics and supports the use of ensemble learning to 
boost predictive reliability. 
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1. Introduction 
Mushrooms have long been an integral part of the dietary habits of the Indonesian people, serving both as a 

source of nutrition and as a key ingredient in a variety of traditional cuisines. With protein content ranging 

from 8.5 to 36.9 grams per 100 grams, mushrooms offer nutritional value comparable to meat and eggs and far 

exceed the protein content found in vegetables and grains [1]. Additionally, mushrooms are a rich source of B 

vitamins and have higher protein levels than most other vegetables. Beyond their high nutritional value, 

mushrooms also provide essential health benefits, such as reducing cancer risk, supporting weight loss 

programs, and strengthening the immune system [2]. However, out of approximately 14,000 identified 
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mushroom species, only a small portion are safe for consumption, while around 3,000 species are known to be 

toxic [3], [4]. The presence of toxins in certain types of wild mushrooms poses a serious health threat, as they 

can cause severe poisoning and even death. Between 2010 and 2020, there were 76 reported cases of 

mushroom poisoning in Indonesia, involving more than 550 victims and resulting in at least nine deaths, most 

of which were attributed to genera such as Amanita, Chlorophyll, and Galerina [5], [6]. These incidents have 

occurred not only in rural areas but have also impacted urban populations. For example, in December 2024, 17 

residents of Kampung Kebon Kalapa, Sukabumi, suffered poisoning after consuming wild mushrooms, with one 

individual in critical condition. Similarly, in March 2023, six residents in Sikka Regency, East Nusa Tenggara 

(NTT), were hospitalized after showing symptoms of poisoning due to wild mushroom consumption [7], [8]. 

 

Mushroom poisoning is not merely a public health issue but also intersects with education, food safety, and risk 

mitigation in consuming natural products. Amidst the growing trend of organic lifestyles and the use of non-

timber forest products, limited knowledge about toxic mushroom species presents a new and emerging threat. 

Therefore, research that offers preventive solutions for identifying poisonous mushrooms is highly significant, 

particularly in tropical countries like Indonesia, which are rich in fungal biodiversity. 

So far, most mushroom identification efforts have remained manual, relying on personal experience or visual 

recognition. Scientific approaches using machine learning technology are still rarely applied in the local 

context, particularly regarding datasets relevant to conditions in Indonesia. 

Research on mushroom classification and edibility detection has been extensively developed using machine 

learning and ensemble learning approaches. [9] explored ensemble learning methods such as Bagging with 

Naïve Bayes, Boosting with AdaBoost, and Random Forest based on the CART method, where Bagging and 

Random Forest demonstrated near-perfect accuracy of 99.93%. In contrast, the study by [10] focused more on 

the morphological characteristics of mushrooms, such as cap color, shape, and habitat, to compare the 

performance of Naïve Bayes and K-Nearest Neighbors (KNN), finding that KNN (k=1) achieved perfect accuracy 

of 100%, outperforming Naïve Bayes, which reached only 90.2%. Meanwhile, [11] also used KNN to classify 

mushrooms as edible or poisonous, achieving a high model accuracy of 99% and a minimal error rate. On the 

other hand, [12], [13] extended the classification study into the domain of mushroom diseases by identifying 

six types of diseases using CNN for feature extraction and Random Forest for classification. The study reported 

precision, recall, and F1 scores in the 95%–97% range. [14] employed an ensemble learning approach using 

the UCI mushroom dataset and found that the Extra Trees method performed best, with 99.17% accuracy and 

a near-perfect ROC AUC score of 99.94%, while AdaBoost showed less optimal performance. Additionally, [15] 

applied Random Forest and Multiclass Support Vector Machine (M-SVM) for mushroom disease detection. The 

results showed that Random Forest produced higher accuracy (82%) than M-SVM (76%). Furthermore, 

machine learning has also been applied to monitor mushroom growth, as demonstrated by [16] using Yolov5 

and Detectron2, which achieved an accuracy of 70%. In addition, [17], [18] employed CNN and YOLO for real-

time detection of poisonous and edible mushrooms. These findings show that ensemble learning methods and 

traditional classification techniques can significantly enhance the accuracy of detecting mushroom edibility 

and diseases.  

Previous research has demonstrated the effectiveness of various classification algorithms in distinguishing 

between poisonous and edible mushrooms, particularly using publicly available datasets such as the UCI 

Mushroom Dataset. However, many of these studies remain limited to generalized scenarios and have not been 

tailored for practical application in specific local contexts, especially in regions with unique fungal biodiversity. 

Additionally, insufficient attention has been given to the interpretability of machine learning models, which 

poses challenges when communicating the reasoning behind classification results to non-technical 

stakeholders, such as local harvesters or public health practitioners. Addressing these gaps, this study aims not 

only to evaluate and compare the performance of traditional and ensemble classification algorithms but also to 

explore approaches that enhance the transparency, contextual relevance, and practical usability of predictive 

models in real-world mushroom identification and poisoning prevention. 
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2. Research Method 

2.1 Research Design 
This study adopts a quantitative approach with an experimental design based on supervised machine learning. 

Its primary focus is to develop a classification model that distinguishes poisonous and edible mushrooms using 

various traditional machine-learning methods and ensemble learning techniques. In general, the research 

consists of five main stages. First, data collection and understanding use a public dataset containing various 

mushroom characteristics. Second, data preprocessing is performed, including handling missing values with 

mean imputation, normalizing numerical attributes using MinMax Scaler, and encoding categorical attributes 

using One-Hot Encoding. Third, exploratory data analysis (EDA) is conducted to identify key data patterns and 

understand relationships between attributes and the target variable. The fourth stage involves model 

development, where traditional methods such as Logistic Regression, Decision Tree, Support Vector Machine, 

KNN, and Naïve Bayes are applied and combined using ensemble learning techniques such as Voting, Stacking, 

a combination of Bagging and Stacking with Logistic Regression as the final estimator, as well as other ensemble 

methods including Random Forest, Gradient Boosting, AdaBoost, and XGBoost. Finally, model evaluation uses 

five key metrics, accuracy, precision, recall, F1-score, and AUC, to assess model performance and generalization 

capability. Through this approach, the study aims to produce an accurate classification model. It also seeks to 

explore the effectiveness of ensemble learning strategies in enhancing the prediction performance of 

mushroom classification. 

2.2 Dataset 
This study utilizes the Mushroom Classification Dataset, which was obtained from the UCI Machine Learning 

Repository and accessible via Kaggle. The dataset provides information on various types of mushrooms, 

primarily focusing on determining whether a given mushroom species is edible or poisonous. It contains 8,124 

samples with 22 attributes and one target attribute. Each mushroom is described based on several physical 

characteristics, such as cap shape, cap surface texture, cap color, presence of bruises, odor, gill attachment to 

the stalk, gill size and color, stalk shape, stalk root type, and the habitat in which the mushroom grows. The 

target label in this dataset is encoded as 'e' for edible mushrooms and 'p' for poisonous ones. An example from 

the dataset is presented in Table 1. 

Table 1. Example of the Dataset Used 

Class 
Cap 

Diameter 

Cap 

Shape 

Cap 

Surface 

Cap 

Color 

Does 

Bruise or 

Bleed 

Gill 

Attachment 

Gill 

Spacing 

Gill 

Color 

Stem 

Height 
... 

Stem 

Root 

Stem 

Surface 

p 15.26 x g o f e NaN w 16.95 ... s y 

p 16.60 x g o f e NaN w 17.99 ... s y 

p 14.07 x g o f e NaN w 17.80 ... s y 

p 14.17 f h e f e NaN w 15.77 ... s y 

p 14.64 x h o f e NaN w 16.53 ... s y 

 

2.3 Data Preprocessing Steps 
The preprocessing process is carried out to ensure the data is in optimal condition before entering the modeling 

phase, including: 

● Handling Missing Values 

Nilai kosong pada dataset diidentifikasi dan diimputasi menggunakan nilai rata-rata (mean) untuk 

atribut numerik. 

● Normalization  

Numerical attributes are normalized using MinMax Scaler to adjust the data scale to a range of 0 to 1. 

● Categorical Data Encoding  

Categorical attributes are converted into numerical format through One-Hot Encoding. 

● Exploratory Data Analysis (EDA) 
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Exploratory analysis is conducted to understand data distribution, correlations between attributes, 

and detect potential anomalies or outliers. 

2.4 Modeling Stage 
In this study, the modeling process is divided into two main phases: applying traditional models and applying 

ensemble learning-based models to optimize classification performance. In the first phase, various 

conventional machine-learning methods are applied. Some of the techniques used include Logistic Regression, 

which serves as a baseline for binary classification based on a linear model; Decision Tree Classifier, which 

allows decision visualization through an interpretable and straightforward tree structure; SVM, which is 

effective for determining the best-separating hyperplane between two classes; KNN, an instance-based method 

that leverages proximity between data points; and Naïve Bayes, a simple yet effective probabilistic-based 

method. The parameters used in each traditional method can be seen in Table 2. 

Table 2. Parameter of Traditional Method 

Model Main Parameters 
Logistic Regression max_iter=1000 
Decision Tree default  
Random Forest default  
Support Vector Machine probability=True  
K-Nearest Neighbors default  
Gradient Boosting default  
Naive Bayes default  
XGBoost use_label_encoder=False, eval_metric='mlogloss' 
Voting Classifier voting='soft',  
Stacking + Bagging estimators= all method, final_estimator=LogisticRegression() 
Bagging + Stacking estimator=LogisticRegression(max_iter=1000), n_estimators=10 
Boosting (AdaBoost) estimator=DecisionTreeClassifier(), n_estimators=50 
Model Main Parameter used 
Logistic Regression max_iter=1000 
Decision Tree default 

 

In the second phase, ensemble learning models are applied to improve the robustness and accuracy of the 

model against new data. First, the Voting Classifier is used, where the predictions from multiple models are 

combined based on the majority voting principle to determine the final class. Next, the Stacking Classifier is 

implemented, which is a method that combines predictions from various base learners and retrains them using 

Logistic Regression as a meta-learner to enhance generalization ability. Furthermore, this study also combines 

Bagging and Stacking techniques, where Bagging aims to reduce variance by building models from different 

data subsets. At the same time, Stacking strengthens accuracy through a meta-model approach, still using 

Logistic Regression as the final estimator. Additionally, several ensemble learning methods are applied, such 

as the Random Forest Classifier, a technique capable of reducing overfitting risk by combining multiple decision 

trees. Moreover, Gradient Boosting is used, an iterative technique that gradually corrects prediction errors; 

XGBoost, a boosting variant known for its speed and accuracy; and AdaBoost, a boosting method that combines 

several weak learners to form a strong learner. The ensemble method pipeline applied can be seen in Table 3. 

In this study, model implementation was carried out using two primary libraries: Scikit-Learn and XGBoost. 

Scikit-Learn was utilized for all models except for the XGBoost model, which relied on its dedicated library. 

Scikit-Learn was chosen for its comprehensive collection of machine learning algorithms that are user-friendly 

and support efficient data preprocessing and evaluation. Meanwhile, XGBoost was employed separately to 

leverage its powerful boosting technique, which significantly enhances prediction accuracy, especially when 

dealing with complex and large datasets. By combining these two libraries, the research was able to optimize 

both the performance and efficiency of the model development process 
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Table 3. Pipeline of Ensemble Method 

Ensemble 
Method 

Base Estimators Final Estimator Notes 
Ensemble 

Method 

Voting Classifier 
Logistic, Tree, RF, 
SVM, KNN, GB, NB, 
XGBoost 

Majority / 
Probabilistic 

voting='soft' Voting Classifier 

Stacking + 
Bagging 

Logistic, Tree, RF, 
SVM, KNN, GB, NB, 
XGBoost 

LogisticRegression 
Output base model 
→ meta-model 

Stacking + 
Bagging 

Bagging + 
Stacking 

LogisticRegression (as 
weak learner) 

Aggregated 
Ensemble of same 
model (bagging) 

Bagging + 
Stacking 

Boosting DecisionTreeClassifier Adaptive weights AdaBoost strategy Boosting 
 

2.5 Model Evaluation 
In order to evaluate the performance of the developed model, this research employs five complementary 

evaluation metrics, offering a holistic understanding of the model’s ability to distinguish between edible and 

poisonous mushrooms. Among these, accuracy serves as a fundamental metric, indicating the proportion of 

correct predictions relative to the total number of test instances. It provides an initial insight into how closely 

the model's classification outcomes match the actual labels. Next, precision is considered, which is the ratio of 

true positive predictions to the total number of positive predictions made by the model. This metric is critical 

in this study, as it shows how accurately the model can identify poisonous mushrooms without making many 

misclassifications of mushrooms that are safe to eat. 

Next, recall is also evaluated, which reflects the model's ability to capture all cases of poisonous mushrooms in 

the dataset. Recall becomes crucial because, in mushroom detection, the failure to identify poisonous 

mushrooms can have fatal consequences. To balance precision and recall, the F1-Score is used, which is the 

harmonic mean of both metrics. The F1-Score provides a fair assessment, especially when the data is 

imbalanced or it is essential to optimize both aspects simultaneously. 

Finally, an analysis is conducted on the AUC (Area Under the Curve). AUC measures the area under the ROC 

curve, and the closer the value is to 1, the better the model distinguishes between poisonous and edible 

mushrooms. Considering these five metrics, the model evaluation does not focus solely on one performance 

aspect. Still, it provides a more comprehensive assessment of the model's accuracy, sensitivity, balance, and 

discriminatory ability in classifying the data. Additionally, cross-validation was conducted after the initial 

evaluation phase to examine whether the model’s exhibited overfitting with respect to the dataset. This step 

helps ensure the robustness and generalizability of the models applied. 

3. Result 

3.1 Preprocessing 
Before building the classification model, a preprocessing phase is conducted to ensure the quality and readiness 

of the data to be used. This phase addresses common issues in raw data, such as missing values, inconsistent 

attribute scales, and categorical data types that machine learning methods cannot directly process. 

First, missing values are handled. The analysis revealed that several attributes contain missing values, such as 

class, cap diameter, cap shape, cap color, does-bruise-or-bleed, gill color, stem height, stem width, stem color, 

ring, habitat, and season. On the other hand, other columns such as cap-surface, gill-attachment, gill-spacing, 

stem-root, stem-surface, veil-type, veil-color, ring-type, and spore-print-color have values. Attributes with 

missing values were imputed using the mean value of the corresponding attribute. This approach is used to 

maintain the balance of the data distribution without introducing significant bias. 
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Next, a normalization technique using Min-Max Scaler is applied for the numerical attributes. This process 

transforms the range of numerical values to a scale of [0,1], thereby speeding up the model training process 

and preventing attributes with larger values from dominating the classification results. 

One Hot Encoding technique is applied for categorical attributes, which converts categorical data into binary 

form so that machine learning methods can recognize and process it optimally. Table 4 provides an example of 

the One Hot Encoding results. 

Table 4. One Hot Encoding Results 

  cap-
diameter 

stem-
height 

stem-
width 

cap-
shape_b 

cap-
shape_c 

cap-
shape_f 

cap-
shape_o 

cap-
shape_p 

cap-
shape_s 

cap-
shape_x 

0 0.240 0.499 0,164 FALSE FALSE FALSE FALSE FALSE FALSE TRUE 

1 0.261 0.530 0,175 FALSE FALSE FALSE FALSE FALSE FALSE TRUE 

2 0.220 0.524 0,170 FALSE FALSE FALSE FALSE FALSE FALSE TRUE 

3 0.222 0.464 0,153 FALSE FALSE TRUE FALSE FALSE FALSE FALSE 

4 0.230 0.487 0,165 FALSE FALSE FALSE FALSE FALSE FALSE TRUE 

After the data cleaning and transformation stage is completed, initial data exploration is also conducted to 

understand the class distribution relationships between attributes and to detect essential patterns within the 

dataset. Examples of the attribute distribution used, such as the cap-shape and cap-surface attributes, can be 

seen in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1. Attribute Distribution 

Figure 1 presents a visual representation of the frequency distribution for various categories under the cap-

shape and cap-surface features in the mushroom dataset. The x-axis displays categorical codes that 

correspond to different cap shapes, such as "g" for grooves, "h" for fibrous, among others, while the y-axis 

indicates the number of occurrences for each category within the dataset. The chart reveals that the "x" 

category (convex cap shape) is the most prevalent, appearing in over 27,000 samples. The "f" category (flat) 

also appears frequently, with approximately 13,500 entries, whereas the "c" (conical) shape is the least 

represented. For the cap-surface feature, the "t" category (scaly texture) dominates the distribution, exceeding 

22,000 occurrences, suggesting that this texture is the most commonly observed. Other textures such as "s" 

(silky), "y" (shiny), and "e" (smooth) show moderate frequencies, ranging from 5,000 to 8,000 samples. This 

distribution highlights the diversity of cap textures and shapes, offering valuable insights that can support more 

precise mushroom classification or species identification. Figure 2 shows the EDA visualization related to the 

correlations between attributes in the dataset. 
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Figure 2. Correlation between attributes in the dataset used 

Figure 2 displays a heatmap of the Pearson correlation matrix, illustrating the linear relationships among three 

numerical features in the mushroom dataset: cap diameter, stem height, and stem width. The colors on the 

heatmap represent the strength of these correlations, with red indicating a strong correlation and blue 

indicating a weaker one. The results reveal a relatively strong positive correlation of 0.70 between cap diameter 

and stem width, suggesting that mushrooms with larger caps tend to have thicker stems. Meanwhile, the 

correlation between cap diameter and stem height is 0.42, and between stem height and stem width is 0.44, 

both indicating moderate positive relationships. The diagonal values display perfect correlation (value of 1) 

between each feature and itself. These findings highlight the interdependence among features within the 

dataset, which is crucial to consider—especially when applying algorithms that assume feature independence, 

such as Naïve Bayes. If not properly addressed, these correlations could impact model accuracy. 

3.2 Evaluation of Modeling Results 
At this stage, the study presents a comprehensive explanation of the results obtained from various classification 

experiments. Each machine learning algorithm is assessed using five essential evaluation metrics—accuracy, 

precision, recall, F1-score, and AUC—to provide a complete picture of the model’s ability to distinguish 

between poisonous and edible mushrooms. In addition to these quantitative metrics, confusion matrices are 

included to offer a clearer breakdown of classification outcomes, specifically in terms of true positives, false 

positives, true negatives, and false negatives. This study specifically presents the confusion matrices for the 

Random Forest and Naive Bayes models as illustrative examples of two algorithms with distinctly different 

performance levels. The confusion matrices can be found in Figure 3. Including these visualizations highlights 

the contrasting strengths and weaknesses of each model and serves as a foundational reference for deeper 

discussion regarding model selection and its practical implications in real-world biological classification 

scenarios.  

 

Figure 3. Example of Confusion Matrix 
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The results of applying traditional modeling methods can be seen in Table 5. 

Table 5. Classification Results with Traditional Methods 

Model Accuracy Precision Recall F1 Score AUC 

Logistic Regression 0.841 0.842 0.841 0.842 0.913 

Decision Tree  0.998 0.998 0.998 0.998 0.998 

Support Vector Machine 0.995 0.995 0.995 0.995 0.999 

K-Nearest Neighbors 1.000 1.000 1.000 1.000 1.000 

Naive Bayes 0.598 0.787 0.598 0.550 0.835 

Based on the performance evaluation results in Table 3, from the five machine learning algorithms applied—

Logistic Regression, Decision Tree, SVM, KNN, and Naïve Bayes—there is a significant variation in the accuracy 

and precision of the models. Logistic Regression achieved an accuracy of 84.18% with fairly balanced precision 

and recall, around 84.24% and 84.18%, respectively, and an F1-score of 84.20%. Although its AUC value 

reached 0.91361, its performance still lagged behind other models. On the other hand, the Decision Tree 

showed nearly perfect results, with all metrics—accuracy, precision, sensitivity, and F1-score—at 99.87% and 

an almost perfect AUC value of 0.998. The SVM model also performed competitively, with an accuracy of 

99.53% and other metrics at similar levels, plus an AUC of 0.999, indicating its excellent ability to classify the 

two classes. KNN even showed the best performance, with all evaluation values reaching 100%, reflecting the 

data's suitability for the distance-based approach. 

In contrast, Naïve Bayes exhibited the lowest performance among all models, with an accuracy of only 59.87% 

and an F1-score of 55.01%, although its precision was 78.70%. Its AUC value of only 0.835 further 

demonstrates the limitations of this model in understanding the complex relationships between features. 

Figure 4 shows the training and validation accuracy of the traditional method. 

 

Figure 4. Training and Validation Accuracy of Traditional Method 

Fig 4. illustrates a comparison of several classification algorithms based on their performance across training 

and validation datasets. Models such as Decision Tree, Random Forest, Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), and XGBoost exhibit outstanding results, achieving near-perfect accuracy on both 

training and validation sets. This suggests that these models effectively learn from the data without significant 

overfitting. While Logistic Regression performs slightly lower with around 84% accuracy, its consistent results 

across both datasets indicate reliable and stable performance. A minor drop in validation accuracy is noticeable 

in the Gradient Boosting model, pointing to mild overfitting that still remains within acceptable bounds. In 

contrast, the Naïve Bayes classifier shows a significant drop in performance, hovering around 60% accuracy, 

which may stem from its strong assumption of feature independence—an assumption that doesn't align well 

with the complex relationships present in the dataset. Overall, the chart emphasizes the importance of choosing 

the right algorithm based on data characteristics to achieve robust and accurate classification outcomes. 
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Furthermore, the results of applying ensemble learning models for mushroom classification can be seen in 

Table 6. 

Table 6. Classification Results with Esemble Methods 

Model Accuracy Precision Recall F1 Score AUC 

Voting Classifier 0.999 0.999 0.999 0.999 1.000 

Stacking dan Bagging 1.000 1.000 1.000 1.000 1.000 

Bagging dan Stacking 0.841 0.841 0.841 0.841 0.913 

Random Forest 1.000 1.000 1.000 1.000 1.000 

Gradient Boosting 0.934 0.935 0.934 0.934 0.984 

XGBoost 0.999 0.999 0.999 0.999 0.999 

AdaBoost 0.998 0.998 0.998 0.998 0.998 

Based on the evaluation results of the ensemble learning models shown in Table 4, it can be concluded that 

most of the algorithms performed very highly, even approaching perfect scores on all evaluation indicators. 

Stacking, Bagging, and Random Forest models scored 1.000 for accuracy, precision, recall, F1-score, and AUC. 

This indicates that these approaches could optimally integrate the strengths of various base models to solve 

the task of classifying poisonous and edible mushrooms. The Voting Classifier model also displayed nearly 

perfect performance, with all metrics approaching a value of 0.999. This suggests that the voting mechanism 

among models can provide highly reliable prediction results.  

Meanwhile, the XGBoost and AdaBoost models delivered very competitive results, with evaluation values above 

0.998 and AUC nearing 1, demonstrating the effectiveness of the boosting approach in handling classification 

complexities. However, not all ensemble learning model combinations provided optimal performance. The 

combination of Bagging and Stacking only achieved an accuracy of 84.13%, with other metric values also being 

in a similar range and an AUC of 0.913. This indicates that the success of the ensemble learning approach 

heavily depends on the selection and integration of base models. The Gradient Boosting model also showed 

decent results, with accuracy and other metrics ranging around 93% and an AUC of 0.984. Although it was not 

superior to XGBoost or AdaBoost, this model remains a solid alternative. Overall, ensemble learning approaches 

such as Random Forest, Stacking and Bagging, and Voting Classifiers proved to be the superior choices for 

classifying this dataset. 

In the results section, it was found that the model achieved a very high accuracy rate, both on the training data 

and the testing data. This condition highlights the risk of overfitting, which occurs when a model becomes 

overly adapted to the training data and consequently performs poorly on unseen data. Overfitting is often a 

significant concern in machine learning model evaluation because, although training accuracy can reach 100%, 

the true performance is assessed by its generalization ability. However, despite the training accuracy reaching 

perfect scores in this study, the nearly ideal testing accuracy shows that the model could still maintain strong 

generalization. Therefore, the results demonstrate that the model is reliable on known data and effective in 

predicting unseen data. This can be seen from the overfitting results presented in Table 7. 

Table 7. Overfitting Evaluation 

CV Accuracy Scores [1, 0,99988304 1, 1, 1,] 

Mean CV Accuracy 0,999 

Training Accuracy 1 

Testing Accuracy  0,999 

Based on the results obtained, it can be seen that the model demonstrates awe-inspiring performance. The CV 

Accuracy Scores, ranging from 99.99% to 100% across five-fold cross-validation, indicate that the model has 

high consistency in learning patterns from the training data. The average cross-validation accuracy reaches 
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0.999, meaning the model can maintain outstanding performance across various validation scenarios. During 

training, the model achieved 100% accuracy on the training data, showing that all data were predicted without 

errors. While perfect training accuracy usually raises concerns about overfitting, this was refuted by the 

evaluation results of the testing data. The model achieved an accuracy of 99.99% on the testing data, proving 

that its ability to generalize remains exceptionally well-maintained. Overall, this performance confirms that the 

built Random Forest model is highly reliable, stable, and suitable for making predictions on similar data in the 

future. 

4. Discussions 
The experiment results show that Random Forest, KNN, and the combination of Stacking and Bagging achieved 

perfect performance with accuracy, precision, recall, F1-score, and AUC values 1.0. This condition indicates that 

all three models can separate the poisonous and edible mushroom classes without errors. The impressive 

performance of Random Forest can be explained by its method, which builds multiple decision trees and 

combines the predictions of each tree to reduce the risk of overfitting and improve accuracy [19]. Meanwhile, 

KNN operates based on the distance between data points, and in a mushroom dataset with well-defined 

attribute patterns, this method can provide very accurate predictions. This finding aligns with research by [20], 

which showed that KNN and Decision Trees excel in handling large datasets with complex class distributions. 

The combination of stacking and bagging approaches also produced perfect results, achieving 100%. This result 

is consistent with the study by [21] which showed that ensemble learning methods such as Bagging and 

Boosting are generally more accurate than single models. However, boosting performance can be influenced 

by dataset characteristics. However, not all ensemble learning combinations yielded the best results, as seen in 

the combination of Bagging and Stacking, which performed more similarly to the Logistic Regression model 

than to Random Forest or KNN. Overall, these findings support the existing literature emphasizing that when 

combined and optimized correctly, ensemble learning can be an effective solution to enhance accuracy and 

model robustness against overfitting, particularly in complex categorical data classification tasks like 

poisonous mushroom identification.  

Despite its reputation for being fast and computationally efficient, the Naïve Bayes algorithm exhibited 

significantly lower performance in this study compared to other models, with an accuracy of only 59.8%. This 

underperformance stems not only from its fundamental assumption that features are conditionally 

independent but also from the nature of the dataset itself. In the mushroom dataset used, several attributes—

such as odor, spore print color, gill color, and cap shape—are not only highly informative but also strongly 

correlated with one another. Since Naïve Bayes fails to capture such interdependencies, it produces inaccurate 

estimations of class probabilities, leading to frequent misclassifications. Furthermore, the presence of 

imbalanced distributions in specific attribute values, such as the "foul" odor which predominantly appears in 

poisonous mushrooms, causes the model to overemphasize certain features while ignoring subtler patterns 

that are equally important for accurate prediction. These limitations make Naïve Bayes unsuitable for complex 

classification tasks involving rich categorical data with overlapping feature relationships. The performance 

contrast among models in this study highlights important considerations for algorithm selection. More 

advanced models like Random Forest, K-Nearest Neighbors (KNN), and ensemble techniques such as Stacking 

and Bagging proved far more capable of handling datasets with intricate dependencies among attributes. In 

contrast, simpler models like Naïve Bayes may still be effective when applied to data with more clearly 

separated and independent features, but fall short in capturing the complexity found in real-world biological 

classification problems such as mushroom toxicity prediction. 

Thus, this study provides an additional contribution to strengthen the empirical evidence that in the mushroom 

dataset, models with the ability to capture attribute complexity (such as Random Forest, XGBoost, and KNN) 

outperform models based on simple assumptions (such as Naïve Bayes). Furthermore, the use of a combination 

of traditional models and ensemble learning also opens up new opportunities to enhance classification 

accuracy in the domain of applied biology. 
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5. Conclusions and Future Works 
This study successfully demonstrates that traditional classification models, such as KNN, can achieve perfect 

performance in distinguishing between poisonous and edible mushrooms. These results emphasize the 

effectiveness of models that capture complex relationships between attributes in a categorical dataset. On the 

other hand, simpler methods such as Naïve Bayes are less able to deliver optimal performance due to their 

independence assumption, which does not align with the interdependent characteristics of mushroom data. 

Applying ensemble learning methods, such as Random Forest and the combination of Stacking and Bagging, 

has proven to preserve and even enhance model performance with very high consistency in evaluation. Overall, 

this research reinforces the evidence that ensemble learning approaches can improve models' stability, 

accuracy, and generalization ability, particularly in complex data-based classification tasks. 

Based on the results obtained, it is recommended that future research explore more varied combinations of 

ensemble learning models, including boosting-based methods such as AdaBoost or Gradient Boosting, to assess 

further the potential for improvements in accuracy and model robustness. Additionally, testing these methods 

on more diverse mushroom datasets or other real-world datasets would provide deeper insights into the 

generalization ability of the models. Although this study has successfully demonstrated the capabilities of 

traditional and ensemble learning methods in classifying mushrooms using structured tabular data, there 

remain several opportunities for future exploration. One important direction is to incorporate Explainable 

Artificial Intelligence (XAI) approaches, such as SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-Agnostic Explanations). These interpretability tools would help reveal the influence of 

each individual feature on the model’s predictions, thereby enhancing transparency and making the models 

more trustworthy, especially in safety-critical applications like food consumption and public health. 

Another valuable extension would be to test the models on alternative data types, such as real-world images of 

mushrooms or descriptive textual inputs. Such experimentation would assess how well the current models 

generalize beyond structured data, which is crucial when applying machine learning in real-world 

environments where tabular formats are not always available. Broadening the input modalities not only 

validates model robustness but also paves the way for developing more flexible, multi-modal classification 

systems capable of handling diverse data sources. 
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