

PROCEEDING IC - ITECHS 2014

The $1^{3 t}$ International Conference on Information Technology and Security

PROCEEDING

The $1^{\text {st }}$ International Conference on Information Technology and Security (IC-ITechs) November 27, 2014

Editors \& Reviewers:

Tri Y. Evelina, SE, MM Daniel Rudiaman, S.T, M.Kom Jozua
F. Palandi, M.Kom

Layout Editor:

Eka Widya Sari

PROCEEDING

The $1^{\text {st }}$ International Conference on Information Technology and Security (IC-ITechs) November 27, 2014

ISSN 2356-4407

viii + 276 hlm; $21 \times 29,7$ cm

Reviewers \& Editors:

Tri Y. Evelina, SE, MM
Daniel Rudiaman, S.T, M.Kom
Jozua F. Palandi, M.Kom

Layout Editor:

Eka Widya Sari

Published by:

LEMBAGA PENELITIAN \& PENGABDIAN KEPADA MASYARAKAT
Sekolah Tinggi Informatika \& Komputer Indonesia (STIKI) - Malang
JI. Raya Tidar 100 Malang 65146, Tel. +62-341 560823, Fax. +62-341 562525
Website: itechs.stiki.ac.id E-mail: itechs@stiki.ac.id

GREETINGS

Head of Committee IC-Itechs

For all delegation participants and invited guest, welcome to International Conference on Information Technology and Security (IC-Itechs) 2014 in Malang, Indonesia.

This conference is part of the framework of ICT development and security system that became one of the activities in STIKI and STTAR. this forum resulted in some references on the application of ICT. This activity is related to the movement of ICT development for Indonesia.

IC-Itechs aims to be a forum for communication between researchers, activists, system developers, industrial players and all communications ICT Indonesia and abroad.

The forum is expected to continue to be held continuously and periodically, so we hope this conference give real contribution and direct impact for ICT development.

Finally, we would like to say thanks for all participant and event organizer who involved in the held of the IC-Itechs 2014. We hope all participant and keynote speakers got benefit from this conference.

LIST OF CONTENT

Implementation, Challenges, and Cost Model for Calculating Investment Solutions of Business Process Intelligence 1-8
Arta M. Sundjaja
Bisecting Divisive Clustering Algorithm Based On Forest Graph 9-14
Achmad Maududie, Wahyu Catur Wibowo
3D Interaction in Augmented Reality Environment With Reprojection Improvement on Active and Passive Stereo 15-23
Eko Budi Cahyono, Ilyas Nuryasin, Aminudin
Traditional Exercises as a Practical Solution in Health Problems For Computer Users 24-29
Laurentius Noer Andoyo, Jozua Palandi, Zusana Pudyastuti
Baum-Welch Algorithm Implementation For Knowing Data Characteristics Related Attacks on Web Server Log 25-36
Triawan Adi Cahyanto
Lighting System with Hybrid Energy Supply for Energy Efficiency and Security Feature Of The Building 37-44
Renny Rakhmawati, Safira Nur Hanifah
Interviewer BOT Design to Help Student Learning English for Job Interview 45-50
M. Junus, M. Sarosa, Martin Fatnuriyah, Mariana Ulfah Hoesny, Zamah Sari
Design and Development of Sight-Reading Application for Kids 51-55
Christina Theodora Loman, Trianggoro Wiradinata
Pembuatan Sistem E-Commerce Produk Meubel Berbasis
Komponen 66-74
Sandy Kosasi
Crowd sourcing Web Model of Product Review and Rating Based on Consumer Behaviour Model Using Mixed Service-Oriented System Design $75-80$
Kuli Adam Prasetyo
Predict Of Lost Time at Traffic Lights Intersection Road Using Image Processing 81-88
Yoyok Heru Prasetyo Isnomo
Questions Classification Software Based on Bloom's Cognitive Levels Using Naive Bayes Classifier Method 89-96
M. Fachrurrozi, Lidya Irfiyani Silaban, Novi Yusliani
A Robust Metahuiristic-Based Feature Selection Approach for Classification $97-102$
Aina Musdholifah, Erick
Building a Spatio-Temporal Ontology for Artifacts Knowledge Management 103-110
Nurul Fajrin Ariyani, Daniel Oranova Siahaan
Decision Support on Supply Chain Management System using Apriori Data Mining Algorithm 111-117Eka Widya Sari, Ahmad Rianto, Siska Diatinari Andarawarih
Object Recognation Based on Genetic Algorithm With Color Segmentation 118-128
Evy Poerbaningtyas, Zusana E. Pudyastuti
Developing Computer-Based Educational Game to Support Cooperative Learning Strategy 129-133
Eva Handriyantini
The Use of Smartphone to Process Personal Medical Record by using Geographical Information System Technology 134-142
Subari, Go Frendi Gunawan
Implementasi Metode Integer Programming untuk Penjadualan Tenaga Medis Pada Situasi Darurat Berbasis Aplikasi Mobile 143-148
Ahmad Saikhu, Laili Rochmah
News Sentiment Analysis Using Naive Bayes and Adaboost 149-158
Erna Daniati
Penerapan Sistem Informasi Akutansi pada Toko Panca Jaya Menggunakan Integrated System 159-163
Michael Andrianto T, Rinabi Tanamal, B.Bus, M.Com
Implementation of Accurate Accounting Information Systems To Mid-Scale Wholesale Company 164-168
Aloysius A. P. Putra, Adi Suryaputra P.
Conceptual Methodology for Requirement Engineering based on GORE and BPM 169-174
Ahmad Nurulfajar, Imam M Shofi
Pengolahan Data Indeks Kepuasan Masyarakat (IKM) Pada Balai Besar Pengembangan Budidaya Air Tawar (BBPBAT) Sukabumi dengan Metode Weight Average Index (WAI) 175-182
Iwan Rizal Setiawan, Yanti Nurkhalifah
Perangkat Lunak Keamanan Informasi pada Mobile Menggunakan
Metode Stream dan Generator Cipher 183-189
Asep Budiman Kusdinar, Mohamad Ridwan
Analisys Design Intrusion Prevention System (IPS) Based Suricata 190-193 Dwi Kuswanto
Sistem Monitoring dan Pengendalian Kinerja Dosen Pada Proses Perkuliahan Berbasis Radio Frequency Identification (RFID) Di Uingkungan Universitas Kanjuruhan Malang 194-205 Moh.Sulhan
Multiple And Single Haar Classifier For Face Recognition 206-213 Go Frendi Gunawan, Subari
Sistem Penunjang Keputusan Untuk Menentukan Rangking Taraf Hidup Masyarakat Dengan Metode Simple Additive Weighting 214-224
Anita, Daniel Rudiaman Sijabat
Optical Character Recognition for Indonesian Electronic Id-Card Image 225-232
Sugeng Widodo
Active Noise Cancellation for Underwater Environment using Paspberry PI 233-239
Hanang syahroni, Widya Andi P., Hariwahjuningrat S, R. Henggar B
Implementasi Content Based Image Retrieval untuk Menganalisa Kemiripan Bakteri Yoghurt Menggunakan Metode Latent Semantic Indexing 240-245
Meivi Kartikasari, Chaulina Alfianti Oktavia
Software Requirements Specification of Database Roads and Bridges in East Java Province Based on Geographic Information System 246-255
Yoyok Seby Dwanoko
Functional Model of RFID-Based Students Attendance
Management System in Higher Education Institution 256-262
Koko Wahyu Prasetyo, Setiabudi Sakaria
Assessment of Implementation Health Center Management Information System with Technology Acceptance Model (TAM) Method And Spearman Rank Test in Jember Regional Health 263-267
Sustin Farlinda
Relay Node Candidate Selection to Forwarding Emergency Message In Vehicular Ad Hoc Network 268-273 Johan Ericka
Defining Influencing Success Factors In Global Software Development (GSD) Projects 274-276
Anna Yuliarti Khodijah, Dr. Andreas Drechsler

Predict of Lost Time at Traffic Lights Intersection Road Using Image Processing

Yoyok Heru Prasetyo Isnomo
Electrical Departement, Malang State Polytechnic
E-mail : urehkoyoy@yahoo.co.id

Abstract

There are three lamps in traffic lights, green, red, and amber. The amber lamp is a sign for driver as preparing to move when they are stopping because the red lamp turn on, and as emptying vehicles when the phase of traffic lights turn on green, and the moment is called as lost time. Generally, the amber time is regulated manualyl and constant, but the fact that lost time is not constant. By using CCTV IP IR we can determine speed of vehicle, so we can calculate lost time in real time. The sequence of method is used in this paper to predict and determine speed of vehicle : formulation determination to convert distance on image into actual distance in unit meter; pattern recognition of vehicles, in this research using previous research; time depth determination of the first capturing traffic until the second capturing; speed calculation of each vehicles types, and average of vehicles speed; calculation of lost time. The result of the algorithm aplying show that system can predict the speed of the vehicle, by using velocity formulation the system can determine lost time in automatically.

Keywords: lost time of traffic lights, convertion pixel into meter, image processing

1. INTRODUCTION

There are three lamps in traffic lights, green, red, and amber. The amber lamp is a sign for drivers as preparing to move when they are stopping because the red lamp turn on, and as emptying vehicles when the phase of traffic lights turn on amber, and the moment is called as lost time. The emptying time is time which is used by driver get across toward the destination of intersection lane. As description, the green lamp of lane phase A turn on during 25 seconds, on the end of green lamp there are a lot of vehicles move to overpass from lane phase A to lane phase B , This is assumed that when there is precisely turnover from the red lamp to amber lamp, there are not vehicles to go across toward lane phase B, so the aglow amber lamp is only used by emptying of vehicles from lane phase A. Bonneson (2009), that time tolerance is used to empty by vehicles only 1 second, if the actual time of emptying is 4 seconds, so the time total is 5 seconds. In this case mean that amber lamp will turn on during 4 seconds, and the following 1 second will be used by protection in order to no vehicles which crash.

2. RESEARCH METHOD

Until now, Schoepflin etall (2003), the determination of the amber lamp of each phase is configured by the observation result, but this is still using fixed time, whereas the time is used for emptying of vehicles is not constant, time of amber lamp that is required to emptying vehicles is appropriate with the vehicles queuing dense and the average of vehicles speed. Base on the observation result is known that the average of vehicles speed is influenced by density of traffic and type of vehicles, more number of heavy vehicles and denser traffic will cause to decrease average of vehicles speed.
To obtain prediction of vehicles average speed during emptying in this research uses image processing method, this is the following steps:

- formulation determination to convert distance on image into actual distance in unit meter .
- pattern recognition of vehicles, in this research using previous research.
- time depth determination of the first capturing traffic until the second capturing.
- speed calculation of each vehicles types, and average of vehicles speed.
- calculation of lost time

2.1 Distance Conversion Formulation from Unit Pixel to Unit Meter

To convert distance in pixel unit into meter unit need observation, take data, and do experiment, this is the following steps:
-determine height of CCTV camera
-determine slope and tilt angle CCTV
-measure the farthest and the closest distance in CCTV coverage

- determine the formulation of distance conversion
- determine distance scale from pixel to meter.

In this observation CCTV camera is placed right next to traffic lights in each road phase, this is shown on picture (1).

Picture (1) CCTV Geometry and Projection on Roadway
by :
α angle : angle between CCTV axis horizontal and vertical, generally is called tilt.
β angle : angle between CCTVaxis horizontal (X) and vorizontal (Y), generally is called slope.
h : height of CCTV camera to road.
L : distance from CCTV camera to target object
S1 : distance from A node to B node
S : distance from C node to A node.
The value of α, β, and h will be obtained from observation, on picture (1) that A node is CCTV projection to road surface. If we have got the whole value from CCTV geometry, so we will be able to determine distance between object target with A node (S), this is the formulation;

$$
\begin{align*}
& L=\sqrt{\left(Y_{B}^{2}-Y_{O}^{2}\right)+\left(X_{B}^{2}-X_{O}^{2}\right)} \\
& S_{1}=L \cdot \operatorname{Cos}(\alpha) \\
& S=\frac{S_{1}}{\operatorname{Cos}(\beta)}, \text { sehingga diperoleh sebuah persamaan bahwa: } \\
& S=\frac{\operatorname{Cos}(\alpha) \sqrt{\left(Y_{B}^{2}-Y_{O}^{2}\right)+\left(X_{B}^{2}-X_{O}^{2}\right)}}{\operatorname{Cos}(\beta)} \tag{1}
\end{align*}
$$

The formulation (1) is used to determine distance between target object with projection CCTV Camera to road surface in pixel unit, in this case that image dimension is only 2 D , the influence of tilt angle can be ignored, so value of α angle is 0 . The next we will determine distance scale from pixel to meter, this is the following steps:
a. Capture object target on the road
b. Measure the actual distance between node camera projection to object target in meter unit.
c. Measure distance on image between node camera projection to object target in pixel unit.
d. Do step a - c at least 10 times for different distance
e. Make graphic to relation between the actual distance to image distance in pixel
f. Find the relationship

The implementation of the above step is done observation by measuring the actual distance of road in meter unit and measuring image distance in pixel unit, the result is shown at table (1) below :

Table (1) Result of Data ObservationThe Actual Distance and Image Distance
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \mathrm{x} 1 & \mathrm{x} 2 & \begin{array}{c}\Delta \mathrm{X} \\ \text { (pixel) }\end{array} & \mathrm{y} 1 & \mathrm{y} 2 & \Delta \mathrm{Y} & \mathrm{Yp}(\text { pixel) }\end{array} \begin{array}{c}\text { Yr } \\ \text { (meter) }\end{array}\right)$
by :
x1 : the first end of object target on image X axis
x 2 : the second end of object target on image X axis
$\Delta \mathrm{X}$: distance of object target on image
y1 : the first end of object target on image Y axis
y2 : the second end of object target on image Y axis
$\Delta \mathrm{Y}$: average of object position
Yp : average distance of object on CCTV projection to Y axis in pixel
Yr : distance of object on CCTV projection to Y axis in meter unit (actual distance).
To get relationship formulation between image distance in pixel (Yp) with actual distance in meter (Yr), so the first step is making graphic Yr vs. Yp, the result is obtained :

Picture (2) Graphic relationship between Yr and Yp
Picture (2) shows that relationship graphic between Yr and Yp refer to exponential relation, by using numerical model is obtained formulatian :

$$
Y r \approx \frac{Y_{p}^{4.3}}{10^{5}}
$$

If the formulation is implemented into graphic wil be got linier relation which is shown by picture (3)

Picture (3) Relation Graphic Yr with $\mathrm{Y}_{\mathrm{p}}{ }^{4.3} / 10^{5}$
From picture (3) graphic can be determined the constanta value of $\operatorname{tg}(\theta)$ as constant comparison, from calculaiton is obtained that $\operatorname{tg}(\theta)=0.154155$, so the formulation can be wroten:

$$
\begin{equation*}
Y r=0.154155 \frac{Y_{p}^{4.3}}{10^{5}} \tag{2}
\end{equation*}
$$

2.2 Pattern Recognition of Vehicles

Yoyok (2011), the aim of pattern recognition is to get the same object target when is done to first capture and second capture, so we can predict of true speed target. In this research is using the algorithm which is resulted in 2011 by outhor. This is the global algorithm :

- Capture vehicles traffic
- Separate vehicles from background using XOR logik
- Do edge detection
- Do training process using JFBR method
- Do weight process
- Do examination process by using JFBR method

2.3 Speed Determination of Vehicles

By assuming that the road intersection are 4 phases, and the combination image between first capture with second capture is shown to picture (4), and each capture is done buffering of system time;

Picture (4) Combine between Capture I and Capture II

By subtracting system time on second capture with system time on the first capture, $\mathrm{t}=$ $\mathrm{t} 2-\mathrm{t} 1$. In this case t is time which is required by vehicles as far S.If the first capture is done when the vehicles is right to move toward opposite of lane phase, this mean the first speed of vehicles is zero ($\mathrm{v}_{0}=0$), so the formulation of speed(de-la-Rocha and Palacios, 2011) :
$S=V_{0} \pm \frac{1}{2} a t^{2}$
$S=\frac{1}{2} a t^{2}$, dan $V_{t}=a t$, by substituting into S , will be obtained
$V_{t}=\frac{2 S}{t}$, dengan V_{t} : moment speed
S : distance between the first and second capture
t : time is required as the first and second capture

2.4 The Prediction of Amber Lam orLost Time

By doing speed calculation alot of types vehicles ($\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$), so it will be obtained the average speed of vehicles $\left(\mathrm{v}=\Sigma\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right) / \mathrm{N}\right)$. If vehicles speed after capturing II is assumed constant so lost time can be calculated using simple formulation :

$$
\begin{aligned}
S & =v . t \\
t & =\frac{S}{v}
\end{aligned}
$$

3. RESULT AND DISCUSSION

Some parameters that is got from direct measurement at traffic lights intersection : distance between line stopping and opposite (Ls), width each lane (w), height of CCTV (h), slope (β), tilt (α). This is the data which has been taken at intersection :

- distance between line stopping and opposite (Ls) : (40, 35) m
- height of CCTV (h) : 3 m
- slope $(\beta) \quad: 5^{0}$
- tilt $(\alpha) \quad: 4^{0}$
- distance between line stopping with projection node of CCTV : 2 m
- distance between stopping line $\left(\mathrm{L}_{\mathrm{s}}\right) \quad: 40 \mathrm{~m}$

The folowwing is coordinate of object :
(X1,Y1) : 162,59
(X2,Y2) : 175,59
($\mathrm{X}_{\text {CCTV }}, \mathrm{Y}_{\text {CCTV }}$) : 169,0
The calculation of distance :
$\mathrm{Yp}=252-193=59$ pixel
$\mathrm{Yr}=0.154155 * 59^{4.3} / 10^{5}$
$=65 \mathrm{Cm}$
By using the above formulation will be obtained the real distance and the real time, as shown table (2)

Table (2) Distance vehicles to projection node of CCTV

No	Group of motorcycle			Group of middle vehicles			Group of heavy vehicles		
	$\begin{gathered} \mathrm{Y} \\ \text { (pixel) } \end{gathered}$	$\underset{\text { (pixel) }}{\text { Yp }}$	t (det)	$\begin{gathered} \mathrm{Y} \\ \text { (pixel) } \end{gathered}$	$\begin{gathered} \text { Yp } \\ \text { (pixel) } \end{gathered}$	t (det)	$\begin{gathered} \mathrm{Y} \\ \text { (pixel) } \end{gathered}$	$\underset{\text { (pixel) }}{\text { Yp }}$	t (det)
1	103	108	1.6	133	88	0.8	96	125	3.3
2	101	110	1.8	130	91	0.9	93	128	3.8
3	99	112	1.9	126	95	1	89	132	4.2
4	97	114	2.1	123	98	1.1	87	134	4.6
5	94	117	2.2	120	101	1.3	84	137	4.9
6	92	119	2.4	117	104	1.5	81	140	5.4
7	89	122	2.6	114	107	1.7	79	142	5.8
8	85	126	2.8	112	109	1.9	77	144	6

From table (2) can be calculated the prediction of average speed and lost time, as shown table (3)

Table (3) Average speed of vehicles and time of amber lamp

No	Group of motorcycle			Group of middle vehicles			Group of heavy vehicles			$\begin{gathered} \text { Vrata } \\ \text { (m/det) } \end{gathered}$	Trata det
	Yr (m)	$\begin{gathered} \mathrm{v} \\ (\mathrm{~m} / \mathrm{det}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ \text { (det) } \end{gathered}$	$\begin{gathered} \mathrm{Yr} \\ \text { (m) } \end{gathered}$	$\begin{gathered} \mathrm{v} \\ (\mathrm{~m} / \mathrm{det}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ \text { (det) } \end{gathered}$	Yr (m)	$\begin{gathered} \mathrm{v} \\ (\mathrm{~m} / \mathrm{det}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ \text { (det) } \end{gathered}$		
1	8.544	10.68	3.745	3.542	8.855	4.52	16.02	9.709	4.12	9.748	4.127
2	9.246	10.273	3.894	4.091	9.091	4.4	17.74	9.337	4.284	9.567	4.193
3	9.991	10.517	3.803	4.922	9.844	4.06	20.25	9.643	4.148	10.001	4.005
4	10.781	10.268	3.896	5.626	10.229	3.91	21.6	9.393	4.258	9.963	4.021
5	12.055	10.959	3.65	6.405	9.854	4.06	23.76	9.698	4.125	11.17	2.945
6	12.966	10.805	3.702	7.264	9.685	4.13	26.08	9.659	4.141	11.05	2.991
7	14.431	11.101	3.603	8.209	9.658	4.14	27.72	9.559	4.185	11.106	2.977
8	16.579	11.842	3.378	8.89	9.358	4.27	29.44	9.813	4.076	11.338	2.909

by:
Yr : The actual distance in meter
v : the actual speed in $\mathrm{m} / \mathrm{sec}$
t : travel time ofthe vehicle when thecaptureI andII
$\mathrm{v}_{\text {rata }}$: average speed of vehicles
$\mathrm{t}_{\text {rata }}$: Lost time

4. CONCLUSION

The amber lamp has dual function the first as a sign for drivers as preparing to move when they are stopping because the red lamp turn on, and second as protection so that no vehicles which crash. In order to amber lamp turn on appropriate with condition, so required calculation of actual distance, average speed of vehicles, The result of this research show that the formulation of pixel conversion into meter have good function, and variety time of amber lamp is suitable with average vehicle.

REFERRENCES

[1] Bonneson, J.; Sunkari, S.; and Pratt, M., (2009): Traffic Signal Operations Handbook, Texas Department of TransportationResearch and Technology Implementation Office, Texas, USA.
[2] E. de-la-Rocha, E.; Palacios, R. (2011):Speed Estimation of Vehicles Approaching an Intersection, a Digital Image Processing Method, The Imaging Science Journal, vol.59, no.5, pp.293-302. October, 2011.
[3] Yoyok, HPI., (2011): Automatic Vehicles Number Prediction At Traffic Lights Intersection By Using Radial Basis Funtion Network, The International Conference on Information Technology and Electrical Engineering (CITEE), Gajah Mada University, Yogyakarta.
[4] Todd Nelson Schoepflin,T.N.; Dailey, Daniel J., (2003):Algorithms for Estimating Mean Vehicle Speed Using Uncalibrated Traffic Management Cameras, Washington State Transportation Center (TRAC), University of Washington, USA

